
Supplementary

S1. Graphical Models

Bayesian probability theory has played an important role in the modern machine learning and the

probabilistic inference. In this section, we discuss a powerful representation of probabilistic models, called

graphical models, which offer a great flexibility for problem solving and system modeling.

A graph is defined by a set of nodes and a set of edges connecting these nodes, where each

node represents a random variable or a group of random variables and each edge represents the statistical

dependency between the connecting variables. Then the decomposition of the joint probability over all the

random variables can be expressed by a graph, where the complex global algebraic calculation can be

replaced by local graphical manipulations. In probabilistic graphical models, there are mainly three

different kinds of graphs, i.e. directed graph, undirected graph and factor graph, where the directed and the

undirected graphical models are also known as Bayesian networks and Markov random fields, respectively.

In this section, we focus on the discussion of factor graph, since converting both directed and undirected

graphs into factor graphs is often the canonical way for solving inference problems [15].

bf

1W

5W

af

df cf

ffef

3W
4W

1Y

3Y
4Y

5Y

2W

Figure S1: Example of a factor graph.

S1.1. Factor graph

Factor graph is a bipartite graph, which comprises two different kinds of nodes (i.e. a factor node and a

variable node). In factor graph, each edge must connect a factor node and a variable node. Moreover, each

factor node represents one of factors over subsets of some variables in a decomposed joint distribution.

Each variable node expresses a random variable. Suppose that the decomposition of the joint distribution

over a set of random variables has the form of a product of factors

 ∏ ,

where is a set of variables in the joint distribution, is a subset of variables and is a function of

all variables in .

For example, let us consider the factorization of a joint distribution as

 .

Then, Figure S1 shows the corresponding factor graph representation of the factorization of . Please

note that we use circles and squares to represent variable nodes and factor nodes in factor graph,

respectively.

S2. Inference on Factor Graph

The sum-product algorithm (or Belief propagation (BP) algorithm) is an efficient and exact inference

algorithm for computing local marginal over variables on tree-structured graphs. For graphs with loops, a

lot of applications (e.g. Channel coding [1] and image processing [2], etc.) show that BP algorithm (or

loopy BP algorithm) still provides a good performance [15].

To introduce the sum-product algorithm, let us take a look at the following example first. Suppose that a

system has a set of hidden variables and a set of observations .
We are interested in the estimate of each hidden variable , , given the observed data . Thus,

the estimate ̂ can be expressed as

 ̂

The above equation requires us to compute the marginal distribution out of the joint distribution

 . For this toy problem, we can compute the marginal distributions for each variable independently.

However, for a large-scale problem with hundred or even thousand variables, it is infeasible to

independently marginalize each variable, since the computational burden is very expensive. Fortunately,

BP algorithm on factor graph provides an efficient way to compute marginal distributions over hidden

variables.

1Waf bf

af bf

bf1W1W

2W

5W

Variable node update Factor node updateBelief update

)(11
wm Wfa

)(11
wm

bfW
)(11

wm Wfb

)
(2

2

w

m
bf

W
)(11

wm Wfa
)(11

wm Wfb

)()()(111 11
wmwmwb WfWf ba )()(11 11

wmwm WffW ab  

)
(

5

5

w

m

b
f

W


)()(),,()(525311 52

52

1
wmwmwwwfwm

bbb fWfW

ww

bWf  

Figure S2: Example of message update in BP algorithm

Suppose that the factorization of joint probability takes the form

where each function corresponds to a factor with some variables in the joint distribution. Please note

that the above factorization can be exactly expressed by the factor graph in Figure S2. For example, let us

compute the marginal probability of the discrete variable as follows

 ⏟

∑
 ⏟

∑
 ⏟

 ⏟

 ⏟

 ⏟

where
 denotes a message sent from a factor node to a variable node . Moreover, let us

introduce
 as the message sent from a variable node to a factor node (see Figure S2 for

more details).

By inspecting the above equation, we can conclude that the variable node message update rule as

 ∏

 ,

and the factor node update rule as

 ∑

(∏ ()),

where denotes the set of all neighbors' indices of node excluding the index of the factor

node ; is the factor function for the factor node ; ∑
 denotes a sum over all the variables in

 , that are arguments of , except . Loosely speaking,
 and

 can be

interpreted as the beliefs of node taking the value transmitting from node to and vice versa.

Finally, the sum-product algorithm computes the marginal probability of variable , also called the belief

 at a variable node , as follows

 ∏

 .

So far, we suppose that all of the variables are discrete, so the marginalization is computed by summation.

However, the sum-product algorithm is also applicable to linear-Gaussian models by replacing summation

by integration, e.g. Kalman filtering.

S3. Estimating Model coefficients through Maximum Likelihood (ML) Estimator

Given a training dataset , where and are the binary label

and the feature vector of each record, respectively, with . Moreover, let us denote by
 the set of binary labels. Then the likelihood function in the ML based LR for parameter can be

factorized as

 ∏
 ∏

 ()

 ,

since each records are conditionally independent given the coefficient . For mathematical convenience,

the maximization of the above likelihood function is usually solved in its logarithm domain through some

numerical methods, e.g. Newton-Raphson method [6]. In the Newton-Raphson method, the maximum

likelihood estimator (MLE) ̂ for can be recursively obtained by

 [

]

 ,

where () ∑ [() (())]

 is the logarithm of the

likelihood function at the -th Newton-Raphson iteration. Although, there have been a few previous studies

that work on the distributed LR and distributed privacy preserving LR [7] based on ML treatments, there

are two major difficulties that still plague the practical implementation of these ordinary LR. First, the

complexity of ML based RL does not scale well for the model update of a time-varying dataset with a large

size, since the model update (i.e. retraining the model coefficient based on new observed data) in a MLE

needs to incorporate both the new and the previously input data. Second, the Newton-Raphson method

requires the synchronization among all participating sites during each update iteration (i.e.,), which

dramatically reduces the flexibility of ML based distributed LR in practice.

S4. Estimating Model coefficients through Maximum a Posterior (MAP) Estimator

Bayesian inference: Bayesian theory provides a theoretical framework for reasoning with probabilities. We

provide a brief introduction of the Bayesian LR. In Bayesian inference, any unknown is expressed in terms

of probability, thus the estimation of a vector variable corresponds to the estimation of its posterior

probability . According to Bayes’ rule, the posterior probability can be reformatted as,

.

The probability is called the joint probability, and is called the prior probability, which

captures the belief of obtaining hidden variable before observing the labels . The quantity

measures how likely the observed data is for different , and it is called the likelihood function.

Moreover, can be interpreted as the normalization constant, which can be evaluated through the

marginalization step as follows

 ∫

The fundamental differences between Bayesian and non-Bayesian (e.g., frequentist) paradigms are the

ways they deal with the unknown variable . Non-Bayesian paradigm always considers a fixed as

unknown constant, whose value is determined by, for example, maximum likelihood estimator. The

statistical accuracy of estimates (i.e.,

confidence interval) is obtained by

evaluating different datasets sampled from

 . In contrast, Bayesian paradigm

captures the known variable through its

posterior distribution directly. One

advantage of Bayesian inference is the

inclusion of prior knowledge, which can

avoid some pitfalls for ML estimators.

Moreover, based on new observed data,

Bayesian inference offers an easier way to

do online learning by taking the old

posterior distribution as the new prior.

Then, through Bayesian inference, one

can decouple models from observed data, where the workflow of Bayesian inference has been shown in

Figure S3.

Maximum a Posterior (MAP) Estimator of LR: To find the MAP solution of LR, we use the fact that all

records are conditionally independent given and thus factorize the posterior as

 ∏

 ,

where ∫ is called the normalization constant. For mathematical convenience,

we replace all 0’s in the vector of class label with ’s in Bayesian LR. Therefore, within the new

alphabet of , one can readily show the likelihood function as

.

Without loss of generality, we model the prior probability using a Normal distribution with

zero mean and variance matrix . By inspecting the factorized posterior probability, we can see that each

likelihood function has been decoupled with others, which provides the possibility to evaluate each

likelihood function in a distributed manner. However, the posterior probability and the

normalization constant are mathematically intractable if we want to evaluate products of logistic

likelihood functions and the corresponding integral, respectively. Thus, one workaround for these

difficulties is to resort to use approximation inference methods, where the original logistic likelihood

function can be approximated by another tractable function.

Training Data
D=(Y,X)

 Prior

Model

Learned
posterior

distribution

)(p

)|(βYp

)(Y|βp

Prediction

)*|(βx*yp

Model update
through

new Data

)X',(Y'D'

Prior

Figure S3 : Bayesian inference workflow for online learning.

Most existing approximation methods belong to two classes, i.e., stochastic approximation and

deterministic approximation. Stochastic techniques (a.k.a., sampling methods) are more general and can be

applicable to any kind of distribution. However, stochastic methods are usually computational demanding

in practice. In contrast, deterministic approximation schemes provide some low complexity alternatives

based on the analytical approximations to the posterior distribution. The existing deterministic

approximation methods include Laplace approximation (LA), Variational Bayes (VB), Expectation

Propagation (EP) and so on [8]. In this paper, we proposed an EXpectation Propagation based LOgistic

REgression (EXPLORER) framework for distributed privacy preserving LR in Bayesian paradigm, since

EP typically shows a higher accuracy comparing with other deterministic approximation methods, when it

is designed properly.

S5. Complexity of EXPLORER vs. Ordinary LR

The most complexity parts of ML based ordinary LR are the inversion of the coefficient matrix and the

multiplications among training vectors. The above two operation would result a complexity with the order

of and , respectively, where is the dimension of coefficient matrix and is number of

records in a dataset. Let’s denote by the total number of iterations that an ML estimator of LR needs to

converge. Then the total complexity of an ordinary LR is . If the training dataset keeps

increasing over time, an ML based LR must retrain the model by involving both the new and the previous

data. Therefore, the complexity of each model update in an ordinary LR is proportional to
 ∑

 , where is the total number of model updates requested by users, is the dataset size in

each updates. For the ease of exposition, we assume the size of the dataset increases at the rate

√ . Then the complexity of an ordinary LR can be expressed as .

For the complexity of EXPLORER, the most complexity part is also the inversion of covariance matrix (i.e.,

). Since we must perform matrix inversion of each record, the total complexity is proportional to

). If we also concern an incremental update of the dataset at the rate √ , the

complexity of each inter-site update can be express as √ . It is readily to show that if

 √ , the proposed EXPLORER offers a lower complexity compared with Ordinary LR at each inter-

site update step. Therefore, we conclude that the proposed EXPLORER framework is computationally

favorable for online learning. Moreover, the overall complexity of EXPLORER is always times of

complexity of an inter-site update step, where is the number of iterations used for the convergence of the

inter-site update. As shown in our experiments, is usually a very small number (e.g. 4), thus, the proposed

EXPLORER only introduced a very limit overhead. It is worth mentioning that each site can parallel update.

In other words, if there is number of participant sites, the execution time of EXPLORER would be

proportional to

. Finally, it is worth mentioning that the speedup of the proposed EXPLORER is a result

of distributed computing (i.e., multiple computing sites), while the overall complexity of the proposed

EXPLORER depends on the data size among all sites.

References

[1] D. J. C. MacKay and R. M. Neal, “Near Shannon limit performance of low density parity check

codes,” Electronics letters, vol. 32, no. August, pp. 1645-1646, 1996.

[2] P. F. Felzenszwalb and D. P. Huttenlocher, “Efficient Belief Propagation for Early Vision,”

International Journal of Computer Vision, vol. 70, no. 1, pp. 41-54, May 2006.

[3] T. P. Minka, “Expectation propagation for approximate Bayesian inference,” in Uncertainty in

Artificial Intelligence, 2001, vol. 17, pp. 362-369.

[4] T. Minka, “Divergence measures and message passing,” Microsoft Research Tech Rep

MSRTR2005173, vol. 2005, pp. 1-17, 2005.

[5] H.-andrea Loeliger, “An Introduction to factor graphs,” IEEE Signal Processing Magazine, vol. 21,

no. 1, pp. 28-41, Jan. 2004.

[6] T. Minka, “A comparison of numerical optimizers for logistic regression,” CMU Technical Report,

vol. 2003, pp. 1-18, 2003.

[7] Y. Wu, X. Jiang, J. Kim, and L. Ohno-Machado, “Grid LOgistic REgression (GLORE): Building

Shared Models Without Sharing Data,” Journal of the American Medical Informatics Association

(1st revision), 2012.

[8] C. M. Bishop, Pattern Recognition and Machine Learning. Springer, 2006.

[9] D. W. Hosmer, T. Hosmer, S. Le Cessie, and S. Lemeshow, “A comparison of goodness-of-fit tests

for the Logistic Regression model,” Statistics in Medicine., vol. 16, no. 9, pp. 965-980, 1997.

[10] T. A. Lasko, J. G. Bhagwat, K. H. Zou, and L. Ohno-Machado, “The use of receiver operating

characteristic curves in biomedical informatics,” Journal of Biomedical Informatics, vol. 38, no. 5,

pp. 404-415, 2005.

[11] R. L. Kennedy, a M. Burton, H. S. Fraser, L. N. McStay, and R. F. Harrison, “Early diagnosis of

acute myocardial infarction using clinical and electrocardiographic data at presentation: derivation

and evaluation of logistic regression models.,” European Heart Journal, vol. 17, no. 8, pp. 1181-91,

Aug. 1996.

[12] R. L. Kennedy, a M. Burton, H. S. Fraser, L. N. McStay, and R. F. Harrison, “Early diagnosis of

acute myocardial infarction using clinical and electrocardiographic data at presentation: derivation

and evaluation of logistic regression models,” European Heart Journal, vol. 17, no. 8, pp. 1181-

1191, Aug. 1996.

[13] K. H. Zou, A. I. Liu, A. I. Bandos, L. Ohno-Machado, and H. E. Rockette, Statistical evaluation of

diagnostic performance: topics in ROC analysis. Boca Raton, FL: CRC Press, Chapman & Hall,

2011.

[14] D. W. Hosmer, T. Hosmer, S. Le Cessie, and S. Lemeshow, “A comparison of goodness-of-fit tests

for the Logistic Regression model,” Statistics in Medicine, vol. 16, no. 9, pp. 965-980, 1997.

[15] S. Wang, “Adaptive Channel and Source Coding Using Approximate Inference”, Ph.D. Dissertation,

2011

[16] Thomas Minka, “EP: A quick reference”, Technical Report 2008

