
Supplementary 
 

S1.  Graphical Models 

 

Bayesian probability theory has played an important role in the modern machine learning and the 

probabilistic inference. In this section, we discuss a powerful representation of probabilistic models, called 

graphical models, which offer a great flexibility for problem solving and system modeling. 

 

A graph        is defined by a set of nodes   and a set of edges   connecting these nodes, where each 

node represents a random variable or a group of random variables and each edge represents the statistical 

dependency between the connecting variables. Then the decomposition of the joint probability over all the 

random variables can be expressed by a graph, where the complex global algebraic calculation can be 

replaced by local graphical manipulations. In probabilistic graphical models, there are mainly three 

different kinds of graphs, i.e. directed graph, undirected graph and factor graph, where the directed and the 

undirected graphical models are also known as Bayesian networks and Markov random fields, respectively. 

In this section, we focus on the discussion of factor graph, since converting both directed and undirected 

graphs into factor graphs is often the canonical way for solving inference problems [15]. 
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Figure S1:  Example of a factor graph. 

 

S1.1. Factor graph 

 

Factor graph is a bipartite graph, which comprises two different kinds of nodes (i.e. a factor node and a 

variable node). In factor graph, each edge must connect a factor node and a variable node. Moreover, each 

factor node represents one of factors over subsets of some variables in a decomposed joint distribution. 

Each variable node expresses a random variable. Suppose that the decomposition of the joint distribution 

over a set of random variables has the form of a product of factors  

 

     ∏         , 

 

where   is a set of variables in the joint distribution,    is a subset of variables and        is a function of 

all variables in   .   

     

For example, let us consider the factorization of a joint distribution      as  

 

                                                                   . 

 

Then, Figure S1 shows the corresponding factor graph representation of the factorization of       . Please 

note that we use circles and squares to represent variable nodes and factor nodes in factor graph, 

respectively. 

 

 



 

 

S2.  Inference on Factor Graph 

 

The sum-product algorithm (or Belief propagation (BP) algorithm) is an efficient and exact inference 

algorithm for computing local marginal over variables on tree-structured graphs. For graphs with loops, a 

lot of applications (e.g. Channel coding [1]  and image processing [2], etc.) show that BP algorithm (or 

loopy BP algorithm) still provides a good performance [15]. 

 

To introduce the sum-product algorithm, let us take a look at the following example first. Suppose that a 

system has a set of hidden variables                    and a set of observations                . 
We are interested in the estimate of each hidden variable   ,          , given the observed data  . Thus, 

the estimate  ̂  can be expressed as  

 
 ̂        

  

        

        
  

       

    

       
  

         

 

 

The above equation requires us to compute the marginal distribution         out of the joint distribution 

      . For this toy problem, we can compute the marginal distributions for each variable independently. 

However, for a large-scale problem with hundred or even thousand variables, it is infeasible to 

independently marginalize each variable, since the computational burden is very expensive. Fortunately, 

BP algorithm on factor graph provides an efficient way to compute marginal distributions over hidden 

variables.  
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Figure S2:  Example of message update in BP algorithm 

 

Suppose that the factorization of joint probability        takes the form  

 
                                                             

                                                              
 

 

where each function       corresponds to a factor with some variables in the joint distribution. Please note 

that the above factorization can be exactly expressed by the factor graph in Figure S2. For example, let us 

compute the marginal probability of the discrete variable    as follows   
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where       
     denotes a message sent from a factor node    to a variable node   . Moreover, let us 

introduce       
     as the message sent from a variable node    to a factor node    (see Figure S2 for 

more details). 

By inspecting the above equation, we can conclude that the variable node message update rule as  

 

      
     ∏            

       
    , 

 

and the factor node update rule as  

 

      
     ∑       

(      ∏                 (  )), 

 

where         denotes the set of all neighbors' indices of node    excluding the index   of the factor 

node   ;        is the factor function for the factor node   ; ∑       
 denotes a sum over all the variables in 

  , that are arguments of       , except   . Loosely speaking,       
     and       

     can be 

interpreted as the beliefs of node    taking the value    transmitting from node    to    and vice versa. 

Finally, the sum-product algorithm computes the marginal probability of variable   , also called the belief 

      at a variable node   , as follows  

 

      ∏         
      

    . 

 

So far, we suppose that all of the variables are discrete, so the marginalization is computed by summation. 

However, the sum-product algorithm is also applicable to linear-Gaussian models by replacing summation 

by integration, e.g. Kalman filtering. 

 

 

S3. Estimating Model coefficients through Maximum Likelihood (ML) Estimator 

 

Given a training dataset                              , where          and    are the binary label 

and the feature vector of each record, respectively, with        . Moreover, let us denote by   
         the set of binary labels. Then the likelihood function in the ML based LR for parameter   can be 

factorized as  

 

        ∏         
    ∏         

  (           )
     

   , 

 

since each records are conditionally independent given the coefficient  . For mathematical convenience, 

the maximization of the above likelihood function is usually solved in its logarithm domain through some 

numerical methods, e.g. Newton-Raphson method [6]. In the Newton-Raphson method, the maximum 

likelihood estimator (MLE)  ̂ for   can be recursively obtained by                     
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]
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where  (    )  ∑ [      (        )           (   (       ))]
 
  is the logarithm of the 

likelihood function at the  -th Newton-Raphson iteration. Although, there have been a few previous studies 

that work on the distributed LR and distributed privacy preserving LR [7] based on ML treatments, there 

are two major difficulties that still plague the practical implementation of these ordinary LR. First, the 

complexity of ML based RL does not scale well for the model update of a time-varying dataset with a large 

size, since the model update (i.e. retraining the model coefficient based on new observed data) in a MLE 

needs to incorporate both the new and the previously input data. Second, the Newton-Raphson method 

requires the synchronization among all participating sites during each update iteration (i.e.,  ), which 

dramatically reduces the flexibility of ML based distributed LR in practice.  

 

S4. Estimating Model coefficients through Maximum a Posterior (MAP) Estimator 



 

Bayesian inference: Bayesian theory provides a theoretical framework for reasoning with probabilities. We 

provide a brief introduction of the Bayesian LR. In Bayesian inference, any unknown is expressed in terms 

of probability, thus the estimation of a vector variable   corresponds to the estimation of its posterior 

probability       . According to Bayes’ rule, the posterior probability can be reformatted as,   

  

       
      

    
 

          

    
. 

 

The probability        is called the joint probability, and      is called the prior probability, which 

captures the belief of obtaining hidden variable   before observing the labels  . The quantity        

measures how likely the observed data   is for different  , and it is called the likelihood function. 

Moreover,      can be interpreted as the normalization constant, which can be evaluated through the 

marginalization step as follows  

 

     ∫                 

 

The fundamental differences between Bayesian and non-Bayesian (e.g., frequentist) paradigms are the 

ways they deal with the unknown variable  . Non-Bayesian paradigm always considers a fixed   as 

unknown constant, whose value is determined by, for example, maximum likelihood estimator. The 

statistical accuracy of estimates (i.e., 

confidence interval) is obtained by 

evaluating different datasets sampled from 

    . In contrast, Bayesian paradigm 

captures the known variable   through its 

posterior distribution directly. One 

advantage of Bayesian inference is the 

inclusion of prior knowledge, which can 

avoid some pitfalls for ML estimators. 

Moreover, based on new observed data, 

Bayesian inference offers an easier way to 

do online learning by taking the old 

posterior distribution as the new prior. 

Then, through Bayesian inference, one 

can decouple models from observed data, where the workflow of Bayesian inference has been shown in 

Figure S3. 

 

Maximum a Posterior (MAP) Estimator of LR: To find the MAP solution of LR, we use the fact that all 

records are conditionally independent given   and thus factorize the posterior as  
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   , 

 

where        ∫               is called the normalization constant. For mathematical convenience, 

we replace all 0’s in the vector of class label   with   ’s in Bayesian LR. Therefore, within the new 

alphabet of          , one can readily show the likelihood function as  

             
     

 

       
   

. 

Without loss of generality, we model the prior probability      using a Normal distribution         with 

zero mean and variance matrix   . By inspecting the factorized posterior probability, we can see that each 

likelihood function has been decoupled with others, which provides the possibility to evaluate each 

likelihood function in a distributed manner.  However, the posterior probability        and the 

normalization constant   are mathematically intractable if we want to evaluate products of logistic 

likelihood functions and the corresponding integral, respectively. Thus, one workaround for these 

difficulties is to resort to use approximation inference methods, where the original logistic likelihood 

function can be approximated by another tractable function.  
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Figure S3 : Bayesian inference workflow for online learning. 

 



Most existing approximation methods belong to two classes, i.e., stochastic approximation and 

deterministic approximation. Stochastic techniques (a.k.a., sampling methods) are more general and can be 

applicable to any kind of distribution. However, stochastic methods are usually computational demanding 

in practice. In contrast, deterministic approximation schemes provide some low complexity alternatives 

based on the analytical approximations to the posterior distribution. The existing deterministic 

approximation methods include Laplace approximation (LA), Variational Bayes (VB), Expectation 

Propagation (EP) and so on [8]. In this paper, we proposed an EXpectation Propagation based LOgistic 

REgression (EXPLORER) framework for distributed privacy preserving LR in Bayesian paradigm, since 

EP typically shows a higher accuracy comparing with other deterministic approximation methods, when it 

is designed properly. 

 

 

S5. Complexity of EXPLORER vs. Ordinary LR 

 

The most complexity parts of ML based ordinary LR are the inversion of the coefficient matrix and the 

multiplications among training vectors. The above two operation would result a complexity with the order 

of       and        , respectively, where   is the dimension of coefficient matrix and   is number of 

records in a dataset. Let’s denote by   the total number of iterations that an ML estimator of LR needs to 

converge. Then the total complexity of an ordinary LR is             . If the training dataset keeps 

increasing over time, an ML based LR must retrain the model by involving both the new and the previous 

data. Therefore, the complexity of each model update in an ordinary LR is proportional to        
   ∑   

  
     , where   is the total number of model updates requested by users,    is the dataset size in 

each updates. For the ease of exposition, we assume the size of the dataset increases at the rate    

√     . Then the complexity of an ordinary LR can be expressed as                . 

 

For the complexity of EXPLORER, the most complexity part is also the inversion of covariance matrix (i.e., 

     ). Since we must perform matrix inversion of each record, the total complexity is proportional to  

       ). If we also concern an incremental update of the dataset at the rate    √     , the 

complexity of each inter-site update can be express as      √          . It is readily to show that if 

   √ , the proposed EXPLORER offers a lower complexity compared with Ordinary LR at each inter-

site update step. Therefore, we conclude that the proposed EXPLORER framework is computationally 

favorable for online learning. Moreover, the overall complexity of EXPLORER is always   times of 

complexity of an inter-site update step, where   is the number of iterations used for the convergence of the 

inter-site update. As shown in our experiments,   is usually a very small number (e.g. 4), thus, the proposed 

EXPLORER only introduced a very limit overhead. It is worth mentioning that each site can parallel update. 

In other words, if there is   number of participant sites, the execution time of EXPLORER would be 

proportional to  
 

 
. Finally, it is worth mentioning that the speedup of the proposed EXPLORER is a result 

of distributed computing (i.e., multiple computing sites), while the overall complexity of the proposed 

EXPLORER depends on the data size among all sites. 
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