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1. Exome resequencing 

1.1 Study sample 

The NHLBI Exome Sequencing Project (ESP) is a multi-center study to deeply 
sequence the exomes of individuals segregating a variety of heart, lung, and blood 
disorders1. The 6,515 individuals used in the analysis were generated from samples 
ascertained from 20 different cohorts (Supplementary Table 1; detailed information of 
cohorts can be found in Tennessen et al.1). Although these individuals are not a 
random sample, they were ascertained on a variety of distinct phenotypes such that 
cohort specific effects are not expected to bias patterns of SNVs. Indeed, detailed 
analyses of a large subset (n=2,440) of these 6,515 individuals found no systematic 
biases in patterns and characteristics of SNVs attributable to cohort or technical 
sources of variation1. All study participants in each of the component studies provided 
written informed consent for the use of their DNA in studies aimed at identifying 
genetic risk variants for disease and for broad data sharing. Institutional certification 
was obtained for each sample to allow deposition of phenotype and genotype data in 
dbGaP and BAM files in the short-read archive.   

1.2 Exome resequencing, variant calling, and filtering 

The processes of library construction, exome capture, sequencing, and mapping 
were performed as previously described1. SNVs were called using the UMAKE 
pipeline at University of Michigan, which allowed all samples to be analyzed 
simultaneously, both for variant calling and filtering. Briefly, we used BAM files 
summarizing BWA alignments generated at the University of Washington and the 
Broad Institute as input. These BAM files summarized alignments generated by 
BWA2, refined by duplicate removal, recalibration, and indel re-alignment. We 
excluded all reads that were not confidently mapped (Phred-scaled mapping quality < 
20) from further analysis. To avoid PCR artifacts, we clipped overlapping ends in 
paired reads. We then computed genotype likelihoods for exome targeted regions and 
50 flanking bases, accounting for per base alignment quality (BAQ) using samtools3. 
Variable sites and their allele frequencies were identified using a maximum-likelihood 
model, implemented in glfMultiples4. These analyses assumed a uniform prior 
probability of polymorphism at each site. We used a support vector machine (SVM) 
classifier, which is a machine-learning algorithm, to separate likely true positive and 
false-positive variant sites. SVM filtering started by collecting a series of features 
related to quality of each SNV, including overall depth, fraction of samples with 
coverage, fraction of reference bases in heterozygous individuals (allele balance), 
correlation of alternative alleles with strand and read position (strand and cycle bias), 
and inbreeding coefficient for each variant. SNVs that deviated significantly from 
expected values in three or more categories were flagged as likely false positives 
when training the SVM filter. SNVs at HapMap polymorphic sites and Omni 2.5 
array polymorphic sites in the 1000 Genomes project data were flagged as likely true 
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positives. After examining this training set, the SVM classifier was used to identify all 
likely false positive sites, which were excluded from downstream analyses. A total of 
1,908,614 SNVs passed the SVM filter, with an overall transversion to transition ratio 
(Ts/Tv) of 2.84.  

After the initial SNV calls were generated, we re-examined the VCF files and 
applied filters considering total read depth, the number of individuals with coverage at 
the site, the fraction of variant reads in each heterozygote, the ratio of forward and 
reverse strand reads for reads carrying reference and variant alleles, and the average 
position of variant alleles along a read. Next, the SNV call set included variants that 
were called with posterior probability >99% (glfMultiples SNP quality >20), were at 
least 5bp away from an indel detected in the 1000 Genomes Pilot Project, were 
targeted in at least 99% individuals, and had a total depth across samples between 
6823 to 6823000 (~1-1000 reads per sample at average). Sites where the read depth of 
the variant allele was >65% in heterozygotes or where the absolute squared 
correlation between allele (variant or reference) and strand (forward or reverse) 
was >0.15 were excluded. In order to obtain genotypes with high accuracy suitable for 
population genetics analyses, we further set individual genotype to missing data if it 
had quality (GQ) less than 30 and/or filtered depth (DP) less than 10. After such 
filtering, variants with more than 10% of missing genotypes across individuals were 
excluded from further analysis. 

1.3 Identification of related individuals and assignment of ancestry 

In total, 6,823 exomes were obtained from individuals who self-identified as 
European American (EA, n=4,419), African American (AA, n=2,343) and others 
(including Asian, Hispanic and Native American). To remove related individuals, we 
performed a KING analysis5 on the filtered data. Specifically, we performed LD 
pruning using PLINK (–indep-pairwise 50 5 0.5) to the variants with minor allele 
frequency (MAF) >5%. This resulted in 34,945 SNVs for the analysis. KING 
identifies kinship by pairwise comparisons across all individuals, and is robust to 
population structure. Using the authors’ guidelines for a 3rd degree relationship (i.e., 
first cousins), we used a kinship coefficient threshold of 0.04419 (Supplementary Fig. 
1). From this, we were able to form clusters of related individuals, with the majority 
of clusters consisting of two individuals. When all individuals were related to all other 
individuals in a cluster, we preferentially removed those with the greatest overall 
missingness. When these clusters had partial relationships (i.e., A is related to B and 
C but B and C are not related) then we preferentially removed those who would leave 
the largest number of samples. This resulted in the removal of 242 individuals. After 
removing these individuals, we repeated the KING analysis and found no kinships in 
the remaining data set.  

Using the same filtered data set from the KING analysis, we performed a 
principal component analysis (PCA) to infer genetic ancestry (Supplementary Fig. 2). 
Asian, Hispanic, and Native American samples were removed from the analysis and 
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we used the dotted lines in Supplementary Fig. 2 as cut offs to assign individuals to 
EA and AA populations. This likely removed some self-identifying EAs and AAs, but 
resulted in two genetically identifiable groups for further analysis. 

1.4 Data summary and annotation 

 We further removed 13 individuals because of mismatches between self-declared 
and genetically determined sex, and one individual with a call rate less than 80%. 
Thus, the final data set consisted of 4,298 EAs (1,879 males and 2,419 females) and 
2,217 AAs (582 males and 1,635 females). Variants that deviated significantly from 
Hardy-Weinberg Equilibrium (p<10-6) within populations were then filtered out.  

A subset of the individuals (n = 2,440) contained in this data set were previously 
analyzed in Tennessen et al1. Extensive validation of SNVs was performed on this 
subset of 2,440 individuals1. Briefly, based on the analysis of 22 individuals 
sequenced in duplicate, a per-base error rate of 5.5x10-7 and a false discovery rate 
<0.2% were estimated. In addition, over 1,200 novel SNVs functionally annotated as 
a nonsynonymous or nonsense variant were randomly selected for validation by 
orthogonal experiment approaches, including 400 singletons, 768 variants with a 
MAF <10%, and all 52 variants with a MAF ≥10%. Approximately 98% of all variant 
sites that were tested were confirmed, including 98% of singletons, 98% of 
non-singleton SNV sites with a MAF < 10%, and 97% of SNV sites with a MAF ≥ 
10%. 

 The ancestral allele for each variant was inferred from the six primate EPO 
alignments, which can be downloaded from the 1000 Genomes Project (GRCh37)6. 
Other information, such as site type and gene information, was annotated by 
SeattleSeq Annotation 134. Only SNVs that could be confidently polarized into 
derived and ancestral alleles were included in our analysis, resulting in a final data set 
of 1,146,401 (97.3%) autosomal SNVs with known ancestral states (Supplementary 
Fig. 3). 

2. Estimates of allele age 

2.1 Theory for estimates of allele age 

 Let tn,b denote the age of a mutant having b copies in a sample of n genes (0 
<b<n). Griffiths and Tavaré (1998)7 showed that the mean and variance of tn,b can be 
obtained as, 
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(1) 

(2)

 
where Tk (k =n,…,2) is coalescent time which measures the time from k lineages to 

(k-1) lineages, and  (Supplementary Fig. 4). 

In a constant population, they showed that 

                  
(3) 

When , , we can obtain , which is the well known 

formula calculating the expected age of a neutral mutation with frequency x in a 
stationary population derived by Kimura and Ohta (1973)8. 

2.2 A simulation approach to estimate allele age 

A simulation approach was developed to estimate allele age. Specifically, a series 
of coalescent trees were simulated under a given demographic model (e.g. 
Supplementary Fig. 5) by the programs ms9 (for neutral simulations) or msms10 (for 

models with selection). According to these trees,   and  can be 

calculated and plugged into formula (1) and (2) to calculate the mean and the variance 
of allele age for a given frequency. For all results reported in the manuscript, we 
assumed a generation time of 25 years.  

2.3 Average allele age 

We define the average allele age across SNVs as: 

                        
(4) 
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where the weights are calculated according to the site-frequency-spectrum (SFS), 

. In this case, the variance for the average allele age is: 

                    
(5) 

A test statistic, similar to a t-test, was used to compare the average allele age from two 
different groups, 

                   
(6) 

The significance of the test was determined through permutations. 

3. Coalescent simulations 

3.1 Constant population 

We first validated our simulation approach by comparing estimates from 
simulations with theoretical expectations in a constant population with size of 7,310. 
In brief, 4,000 diploid sequences with length 10kb were simulated, assuming the 
mutation rate was 1.5×10-8 per generation and with no recombination. Several factors, 
such as sample size (2N=100, 1000, 2000, 4000, and 8000), sequence length (5kb, 
10kb and 50kb) and recombination rate (0, 1cM/Mb, and 10cM/Mb), were introduced 
to the basic model to explore the robustness of the estimates. In each scenario, 1,000 
replicates (100 replicates when considering recombination) were simulated by ms. 
The mean and variance of allele age in neutral simulations were calculated according 
to formula (1) and (2) based on a series of coalescent trees, and compared with the 
theoretical expectation according to formula (3). 

Compared with the theoretical estimates, allele age at a given derived allele 
frequency (DAF) can be accurately estimated by our simulation approach 
(Supplementary Fig. 6a), and the variance for the estimates becomes stable when the 
sample size is large enough (Supplementary Fig. 6b). Simulations also illustrated that 
the estimation of allele age is robust to different lengths of simulated sequence and 
recombination rates (Supplementary Fig. 6c -6f). Thus, we fixed the sequence length 
of 10kb and simulated without recombination in the following analyses to reduce the 
computational burden. 

3.2 Population growth, migration, and selection 
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Effects of population growth, migration, and selection on the SFS and estimates 
of allele age were investigated in a more realistic demographic model for EAs and 
AAs (Supplementary Fig 5)1. In this model, explosive population growth beginning 
5,115 years ago was introduced into the commonly used Out-of-African Model11 to 
account for the abundance of rare variants observed by resequencing in large sample 
sizes. To match the empirical data, we simulated sequences for 4,298 EAs and 2,217 
AAs, assuming the mutation rate was 1.5×10-8 per generation and no recombination. 
Simulations were conducted by the programs ms and msms (when considering 
selection). For each parameter value described below, 1,000 replicates were 
conducted. 

When considering the influence of recent population growth, migration between 
populations and admixture for AAs were excluded. The change of population size 
before 5,115 years ago was fixed as shown in Supplementary Fig. 5, but different 
recent population growth rates (0, 0.5%, 1.0%, 1.5%, 2.0% and 2.5% per generation) 
were considered for EAs and AAs in the past 5,115 years. As expected, these 
simulations revealed that more variants accumulated for larger growth rates, 
especially for rare variants (Supplementary Fig. 7a and 7b). However, population 
growth has only modest effects on estimates of allele age for a given DAF. This 
observation was expected because the mutation rate remains constant, while the 
increasing population size generates more mutations per generation. In addition, we 
also estimated the expected SNV density per bp in a population without recent 
explosive growth based on this model. 

When considering the influence of migration and admixture (20% contribution 
from European ancestry is assumed for AAs), the demographic model was fixed as 
shown in Supplementary Fig. 5, except that we varied the migration rate (0, 0.5×10-5, 
2.5×10-5, 5×10-5, 10-4 and 15×10-5 per chromosome per generation) during the past 
5,115 years. These simulations revealed that migration has very modest effects on the 
SFS, although it results in EAs obtaining more ancient variants from the African 
population (Supplementary Fig. 7c and 7d). 

Next, we considered the effects of purifying selection (s=0, 0.01%, 0.1%, 1% and 
5%) acting on a single locus in the demographic model shown in Supplementary Fig.5. 
Both the SFS and estimates of allele age change imperceptibly (Supplementary Fig. 
7e and 7f). A potential explanation for this observation is that a site under strong 
purifying selection will be removed quickly from the population, and therefore has 
limited effects on the structure of the coalescent tree; while for weak purifying 
selection, the stochastic effects inherent to the coalescent process will have a greater 
effect on gene genealogies relative to weak purifying selection, thus resulting in stable 
estimates for the expected allele age at given DAF. Therefore, estimation of allele age 
from the neutral demographic model with recent accelerated population growth is a 
reasonable proxy for more complicated and realistic evolutionary scenarios, even 
though the exome is expected to be subject to purifying selection12,13. 
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3.3 Different reported demographic models 

We investigated the robustness of allele age estimated across six reported 
demographic models for European populations1,11,14-17. The main parameters for these 
models are listed in Supplementary Table 2. Sequences for 4,298 European 
individuals were simulated by ms. For each model, 1,000 replicates were performed. 

Several parameter values differ among these models, including growth rates, time 
of the most recent common ancestor of human population (TMRCA), and time of the 
Out-of-Africa (TOOA) dispersal. As a result of recent explosive population growth 
revealed by three studies that analyzed large sample sizes, an excess of rare variants 
was consistently observed (Supplementary Fig. 8a). The estimation of allele age is 
affected by different times of events, such as TMRCA (425 thousand years ago (kya) v.s. 
148 kya) and TOOA (87.5 kya v.s. 51 kya), but such effects were generally modest and 
predominately confined to SNVs with a higher DAF. Thus, as the vast majority of 
variants in the real data are rare and low frequency SNVs, our results are robust to the 
demographic models considered here (Supplementary Fig. 8b and 8c). 

3.4 Effects of errors on the estimation of allele age 

 To determine how robust our estimates of allele age are to various types of 
sequencing errors, we pursued three complimentary analysis strategies. All analyses 
were performed on simulated sequences from a demographic model with recent 
explosive population growth as shown in Supplementary Fig. 51. First, errors were 
randomly introduced into the simulated sequences with a per-base error rate ranging 
from 5.5×10-8 - 5.5×10-6 (note, the estimated per base error rate in this data set is 
5.5x10-7). In this model, errors occurring at invariant sites lead to an excess of rare 
variants, resulting in a slight downward bias of average allele age (Supplementary Fig. 
9a). Second, we assessed how genotyping errors that modulate the allele frequency 
spectrum influences average allele age by randomly introducing errors at variant sites. 
In particular, we randomly changed 1%, 5%, or 10% of allele counts at variant sites 
by switching ancestral and derived status. This resulted in a slight upward bias of 
average allele age (Supplementary Fig. 9b). Third, to assess the influence of false 
negatives, we randomly removed 1%, 5% or 10% of variant sites. This resulted in 
very negligible changes to average allele age (Supplementary Fig. 9c). Thus, these 
results demonstrate that our estimates of allele age, and conclusions therein, are very 
robust to a variety of errors that could be present in the data.  

4. Estimates of allele age in 6,515 exomes 

4.1 Allele age for exomes 

We quantitatively estimated the age of 1,146,401 autosomal SNVs identified 
from 6,515 exomes, based upon the demographic models with recent accelerated 
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population growth1,16,17. Average allele age was calculated according to equation (4), 
and allele age between different groups was compared using equation (6) with 
100,000 permutations. Estimates of allele age were remarkably robust across different 
models (Supplementary Table 3); therefore, we presented the following results based 
on the models proposed by Tennessen et al. (2012)1. Moreover, this model was the 
only one to estimate parameter values for both the EA and AA populations. Finally, in 
contrast to the other two models16,17, the time of the out of Africa dispersal was 
estimated from the data and not arbitrarily fixed11,15. 

In order to investigate the relationship between average allele age and selective 
constraint, a 1Mb sliding window analysis was performed. Average allele age was 
calculated for each window across exomes. These windows were merged into 10 bins 
according to the percentile of the corresponding average age. In each bin, the 
neutrality index18 was calculated based on the number of polymorphic/divergent 
nonsynonymous and synonymous sites. Spearman’s correlation test was used to show 
the correlation between the median of average allele age in each bin and its 
corresponding neutrality index. 

4.2 Allele age for deleterious variants 

To identify putatively deleterious variation, we used SIFT19, PolyPhen220, a 
likelihood ratio test (LRT)21, MutationTaster22, GERP++23 and PhyloP24. Thresholds 
in determining whether a given metric predicted a SNV to be deleterious were as 
follows: SIFT “Damage”, PolyPhen2 “Probably Damaging”, LRT “p<0.001”, 
MutationTaster “disease causing automatic” or “disease causing”, GERP++≥5, and 
PhyloP≥3.Characteristics of the average age of SNVs predicted to be deleterious by 
each method are shown in Supplementary Fig. 12. Note, the average age of 
nonsynonymous variants that were not predicted to be deleterious by any prediction 
method (42.1 kyr and 55.1 kyr in EAs and AAs, respectively) was nearly identical to 
unconstrained synonymous and noncoding SNVs (defined as GERP++≤5 and 
PhyloP≤3; 45.5 kyr in EAs and 58.9 kyr in AAs; t-test, p>0.1 by permutation for both 
EAs and AAs). 

To investigate the features associated with nonsynonymous SNVs predicted to be 
deleterious, we classified amino acids into four categories (non-polar and neutral, 
polar and neutral, acidic and polar, and basic and polar), and compared the proportion 
of SNVs that do or do not result in amino acid changes between groups predicted to 
be deleterious. As expected, the proportion of deleterious variants is higher for SNVs 
resulting in changes between groups (Supplementary Fig. 10b and 10c). Moreover, for 
nonsense variants, changes to stop codons are significantly younger than those from 
stop codons (t-test; p<10-5 by permutation) (Supplementary Fig. 10a). A significant 
negative correlation was observed between average allele age and the proportion of 
deleterious variants in different classes of amino acid changes by all methods 
(Spearman’s correlation, p<10-6), except for the LRT. 
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A majority rule approach was used to identify SNVs most likely to have 
functional consequences1. Specifically, nonsynonymous variants predicted to be 
functionally important by at least four methods and synonymous, splice, and 
noncoding variants predicted by two conservation-based methods (i.e., GERP++ and 
PhyloP) were designated as deleterious. We examined the relationship between the 
proportion of deleterious variants and corresponding allele age. The trend of the 
relationship was smoothed by the R function ‘loess’ with a smoothing parameter of 
0.75 and degree of 2. 

Note, although refer to these SNVs as “deleterious” variants to be consistent with 
the terminology in the literature, it is plausible that a subset are advantageous. 
However, among the set of SNVs predicted to be deleterious only < 0.02% 
(32/164688) have a derived frequency >90%, consistent with an advantageous allele 
sweeping to fixation. More generally, the fitness effects of this set of variants do not 
affect our analyses or conclusions. 

4.3 Allele age of deleterious variants in disease genes 

 We classified genes into Mendelian disease genes, complex disease genes, 
essential genes and others. The list of Mendelian disease genes was obtained from a 
hand-curated OMIM database (referred as hOMIM)25. The list of complex disease 
genes was obtained from the Genetic Association Database (GAD, August 1, 2011 
update)26. Essential genes are human orthologs where knockouts in mice result in 
lethality or sterility27, and was obtained from Mouse Genome Informatics database 
(MGI). Note, we do not expect all essential genes in mice to be essential in humans, 
but this is a useful proxy and is likely enriched for genes that when disrupted have 
severe phenotypes. 

 We investigated the relationship between the proportion of deleterious variants 
and corresponding allele age. The trend of the relationship was smoothed by ‘loess’ 
with a smoothing parameter of 0.75 and degree of 2. Bootstrapping was used to 
calculate 95% confidence intervals, where 1,000 replicates were conducted by 
sampling sites with replacement from the group of interest. 

 In the EA samples, a peak in the proportion of deleterious variants was observed 
in Mendelian disease genes and essential genes for variants that arose before the 
out-of-Africa dispersal (Fig. 4a). We performed a forward simulation to examine the 
probability that a deleterious SNV survives to the present in a demographic model as 
illustrated in Supplementary Fig. 5 (for the EA population). Factors such as when the 
variant arose (i.e., before out-of-Africa, such as 150, 120, 100, 55 kya; in the process 
of Out-of-African (50 kya), and after the Out-of-Africa, such as 10 and 5 kya) and 
magnitude of purifying selection (i.e., s=0, 0.0001%, 0.001%, 0.01%, 0.1% and 1% 
for the derived allele) were considered. For each parameter value, 1,000,000 
replicates were performed. 
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4.4 Allele age in KEGG pathways 

Information of KEGG pathways were collected from the KEGG database (June, 
2011)28, and were annotated to the identified variants in this study. Average allele age 
for (deleterious) SNVs was calculated according to formula (4) for each pathway. The 
relationship between the proportion of deleterious variants and corresponding allele 
age was investigated. The trend of the relationship was smoothed by ‘loess’ with a 
smoothing parameter of 0.75 and degree of 2. Bootstrapping was used to calculate 95% 
confidence intervals, where 1,000 replicates were conducted by sampling sites with 
replacement from the group of interest. 

Both the average allele age for deleterious variants (Kruskal-Wallis Rank Sum 
Test; p=2.5×10-3 and 1.08×10-6 for EAs and AAs, respectively; Fig. 4b) and the 
proportion of deleterious variants (Kruskal-Wallis Rank Sum Test; p=2.3×10-12 and 
1.97×10-15 for EAs and AAs, respectively; Supplementary Fig. 15c) were significantly 
different across 235 KEGG pathways. Interestingly, metabolic pathways possess the 
highest proportion of deleterious variants (Fisher’s exact test, p= 1.55×10-166 and 
3.06×10-169 for EAs and AAs, respectively) and have an older average age 
(Mann-Whitney test, p=1.11×10-4 and 6.27×10-9 for EAs and AAs, respectively) 
compared with other pathways. The relationship between the proportion of deleterious 
variants and allele age suggests that metabolic pathways are under less functional 
constraint relative to other pathways, and hence deleterious alleles are purged more 
slowly (Supplementary Fig. 15a and 15b). 
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N01HC-95169 and RR-024156).   

 

Lung GO: 

Cystic Fibrosis (CF): Cystic Fibrosis Foundation (GIBSON07K0, KNOWLE00A0, 
OBSERV04K0, RDP R026), the NHLBI (R01 HL-068890, R02 HL-095396), NIH 
National Center for Research Resources (UL1 RR-025014), and the National Human 
Genome Research Institute (NHGRI) (5R00 HG-004316). Chronic Obstructive 
Pulmonary Disease (COPDGene):  NHLBI (U01 HL-089897, U01 HL-089856), 
and the COPD Foundation through contributions made to an Industry Advisory Board 
comprised of AstraZeneca, Boehringer Ingelheim, Novartis, Pfizer, and Sunovian. 
The COPDGene clinical centers and investigators are available at www.copdgene.org.  
Acute Lung Injury (ALI):  NHLBI (RC2 HL-101779). Lung Health Study (LHS):  
NHLBI (RC2 HL-066583), the NHGRI (HG-004738), and the NHLBI Division of 
Lung Diseases (HR-46002). Pulmonary Arterial Hypertension (PAH): NIH (P50 
HL-084946, K23 AR-52742), and the NHLBI (F32 HL-083714).  Asthma: NHLBI 
(RC2 HL-101651), and the NIH (HL-077916, HL-69197, HL-76285, M01 
RR-07122).  

 

SWISS and ISGS: 

Siblings with Ischemic Stroke Study (SWISS): National Institute of Neurological 
Disorders and Stroke (NINDS) (R01 NS039987); Ischemic Stroke Genetics Study 
(ISGS): NINDS (R01 NS042733) 

 

WHISP: 
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Women’s Health Initiative (WHI):  The WHI Sequencing Project is funded by the 
NHLBI (HL-102924) as well as the National Institutes of Health (NIH), U.S. 
Department of Health and Human Services through contracts N01WH22110, 24152, 
32100-2, 32105-6, 32108-9, 32111-13, 32115, 32118-32119, 32122, 42107-26, 
42129-32, and 44221. A full listing of WHI investigators can be found at: 
http://www.whiscience.org/publications/WHI_investigators_shortlist.pdf 

 

NHLBI GO Exome Sequencing Project 

BroadGO 

Stacey B. Gabriel (Broad Institute)4,5, 11, 16, 17, David M. Altshuler (Broad Institute, 
Harvard Medical School, Massachusetts General Hospital)1, 5, 7, 17, Gonçalo R. 
Abecasis (University of Michigan)3, 5, 9, 13, 15, 17, Hooman Allayee (University of 
Southern California)5, Sharon Cresci (Washington University School of Medicine)5, 
Mark J. Daly  (Broad Institute, Massachusetts General Hospital), Paul I. W.  de 
Bakker (Broad Institute, Harvard Medical School, University Medical Center 
Utrecht)3, 15, Mark A. DePristo  (Broad Institute)4, 13, 15, 16, Ron Do (Broad Institute)5, 

9, 13, 15, Peter Donnelly (University of Oxford)5, Deborah N. Farlow (Broad Institute)3, 

4, 5, 14, 12, 16, 17, Tim Fennell (Broad Institute), Kiran Garimella (University of Oxford)4, 

16, Stanley L. Hazen (Cleveland Clinic)5, Youna Hu (University of Michigan)3, 9, 15, 
Daniel M. Jordan (Harvard Medical School, Harvard University)13, Goo Jun 
(University of Michigan)13, Sekar Kathiresan (Broad Institute, Harvard Medical 
School, Massachusetts General Hospital)5, 8, 9, 14, 12, 15, 17, 20, Hyun Min Kang 
(University of Michigan)9, 13, 16, Adam Kiezun (Broad Institute)5, 13, 15, Guillaume 
Lettre (Broad Institute, Montreal Heart Institute, Université de Montréal)1, 2, 13, 15, 
Bingshan Li (University of Michigan)3, Mingyao Li (University of Pennsylvania)5, 
Christopher H. Newton-Cheh (Broad Institute, Massachusetts General Hospital, 
Harvard Medical School)3, 8, 15, Sandosh Padmanabhan (University of Glasgow 
School of Medicine)3, 12, 15, Gina Peloso (Broad Institute, Harvard Medical School, 
Massachusetts General Hospital)5, Sara Pulit (Broad Institute)3, 15, Daniel J. Rader 
(University of Pennsylvania)5, David Reich (Broad Institute, Harvard Medical 
School)15, Muredach P. Reilly (University of Pennsylvania)5, Manuel A. Rivas (Broad 
Institute, Massachusetts General Hospital)5, Steve Schwartz (Fred Hutchinson Cancer 
Research Center)5, 12, Laura Scott (University of Michigan)1, David S. Siscovick 
(University of Washington)5, 1, 25, John A. Spertus (University of Missouri Kansas 
City)5, Nathaniel O. Stitziel (Brigham and Women's Hospital)5, 15, Nina Stoletzki 
(Brigham and Women's Hospital, Broad Institute, Harvard Medical School)13, Shamil 
R. Sunyaev (Brigham and Women's Hospital, Broad Institute, Harvard Medical 
School)1, 3, 5, 13, 15, Benjamin F. Voight (Broad Institute, Massachusetts General 
Hospital), Cristen J. Willer (University of Michigan)1, 9, 13, 15 
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HeartGO 

Stephen S. Rich (University of Virginia)2, 4, 7, 8, 9, 14, 11, 15, 17, 18, 31, Ermeg Akylbekova 
(Jackson State University, University of Mississippi Medical Center)29, Larry D. 
Atwood (Boston University)1, 11, 28, Christie M. Ballantyne (Baylor College of 
Medicine, Methodist DeBakey Heart Center)9, 22, Maja Barbalic (University of Texas 
Health Science Center Houston)9, 14, 15, 17, 22, R. Graham Barr (Columbia University 
Medical Center)10, 31, Emelia J. Benjamin (Boston University)14, 20, 28, Joshua Bis 
(University of Washington)15, 23, Eric Boerwinkle (University of Texas Health Science 
Center Houston)3, 5, 9, 13, 15, 17, 22, Donald W. Bowden (Wake Forest University)1, 31, 
Jennifer Brody (University of Washington)3, 5, 15, 23, Matthew Budoff (Harbor-UCLA 
Medical Center)31, Greg Burke (Wake Forest University)5, 31, Sarah Buxbaum 
(Jackson State University)3, 13, 15, 29, Jeff Carr (Wake Forest University)25, 29, 31, Donna 
T. Chen (University of Virginia)6, 11, Ida Y. Chen (Cedars-Sinai Medical Center)1, 31, 
Wei-Min Chen (University of Virginia)13, 15, 18, Pat Concannon (University of 
Virginia)11, Jacy Crosby (University of Texas Health Science Center Houston)22, L. 
Adrienne Cupples (Boston University)1, 3, 5, 9, 13, 15, 18, 28, Ralph D'Agostino (Boston 
University)28, Anita L. DeStefano (Boston University)13, 18, 28, Albert Dreisbach 
(University of Mississippi Medical Center)3, 29, Josée Dupuis (Boston University)1, 28, 
J. Peter Durda (University of Vermont)15, 23, Jaclyn Ellis (University of North 
Carolina Chapel Hill)1, Aaron R. Folsom (University of Minnesota)5, 22, Myriam 
Fornage (University of Texas Health Science Center Houston)3, 18, 25, Caroline S. Fox 
(National Heart, Lung, and Blood Institute)1, 28, Ervin Fox (University of Mississippi 
Medical Center)3, 9, 29, Vincent Funari (Cedars-Sinai Medical Center)1, 11, 31, Santhi K. 
Ganesh (University of Michigan)2, 22, Julius Gardin (Hackensack University Medical 
Center)25, David Goff (Wake Forest University)25, Ora Gordon (Cedars-Sinai Medical 
Center)11, 31, Wayne Grody (University of California Los Angeles)11, 31, Myron Gross 
(University of Minnesota)1, 5, 14, 25, Xiuqing Guo (Cedars-Sinai Medical Center)3, 15, 31, 
Ira M. Hall (University of Virginia), Nancy L. Heard-Costa (Boston University)1, 11, 28, 
Susan R. Heckbert (University of Washington)10, 14, 20, 23, Nicholas Heintz (University 
of Vermont), David M. Herrington (Wake Forest University)5, 31, DeMarc Hickson 
(Jackson State University, University of Mississippi Medical Center)29, Jie Huang 
(National Heart, Lung, and Blood Institute)5, 28, Shih-Jen Hwang (Boston University, 
National Heart, Lung, and Blood Institute)3, 28, David R. Jacobs (University of 
Minnesota)25, Nancy S. Jenny (University of Vermont)1, 2, 23, Andrew D. Johnson 
(National Heart, Lung, and Blood Institute)2, 5, 11, 28, Craig W. Johnson (University of 
Washington)15, 31, Steven Kawut (University of Pennsylvania)10,31, Richard Kronmal 
(University of Washington)31, Raluca Kurz (Cedars-Sinai Medical Center)11, 31, Ethan 
M. Lange (University of North Carolina Chapel Hill)3, 5, 9, 13, 34, Leslie A. Lange 
(University of North Carolina Chapel Hill)1, 2, 3, 5, 9, 12, 13, 15, 17, 18, 20, 25, 34, Martin G. 
Larson (Boston University)3, 15, 28, Mark Lawson (University of Virginia), Cora E. 
Lewis (University of Alabama at Birmingham)25,34, Daniel Levy (National Heart, 
Lung, and Blood Institute)3, 15, 17, 28, Dalin Li (Cedars-Sinai Medical Center)11, 15, 31, 
Honghuang Lin (Boston University)20, 28, Chunyu Liu (National Heart, Lung, and 
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Blood Institute)3, 28, Jiankang Liu (University of Mississippi Medical Center)1, 29, 
Kiang Liu (Northwestern University)25, Xiaoming Liu (University of Texas Health 
Science Center Houston)15, 22, Yongmei Liu (Wake Forest University)2, 5, 31, William 
T. Longstreth (University of Washington)18, 23, Cay Loria (National Heart, Lung, and 
Blood Institute)25, Thomas Lumley (University of Auckland)9, 23, Kathryn Lunetta 
(Boston University)28, Aaron J. Mackey (University of Virginia)16, 18, Rachel Mackey 
(University of Pittsburgh)1, 23, 31, Ani Manichaikul (University of Virginia)8, 15, 18, 31, 
Taylor Maxwell (University of Texas Health Science Center Houston)22, Barbara 
McKnight (University of Washington)15, 23, James B. Meigs (Brigham and Women's 
Hospital, Harvard Medical School, Massachusetts General Hospital)1, 28, Alanna C. 
Morrison (University of Texas Health Science Center Houston)3, 15, 17, Solomon K. 
Musani (University of Mississippi Medical Center)3, 29, Josyf C. Mychaleckyj 
(University of Virginia)13, 15, 31, Jennifer A. Nettleton (University of Texas Health 
Science Center Houston)9, 22, Kari North (University of North Carolina Chapel Hill)1, 3, 

9, 10, 13, 15, 17, 34, Christopher J. O'Donnell (Massachusetts General Hospital, National 
Heart, Lung, and Blood Institute)2, 5, 9, 14, 11, 12, 15, 17, 20, 28, Daniel O'Leary (Tufts 
University School of Medicine)25, 31, Frank Ong (Cedars-Sinai Medical Center)3, 11, 31, 
Walter Palmas (Columbia University)3, 15, 31, James S. Pankow (University of 
Minnesota)1, 22, Nathan D. Pankratz (Indiana University School of Medicine)15, 25, 
Shom Paul (University of Virginia), Marco Perez (Stanford University School of 
Medicine), Sharina D. Person (University of Alabama at Birmingham, University of 
Alabama at Tuscaloosa)25, Joseph Polak (Tufts University School of Medicine)31, 
Wendy S. Post (Johns Hopkins University)3, 9, 14, 11, 20, 31, Bruce M. Psaty (Group 
Health Research Institute, University of Washington)3, 5, 9, 14, 11, 15, 23, Aaron R. 
Quinlan (University of Virginia)18, 19, Leslie J. Raffel (Cedars-Sinai Medical Center)6, 

11, 31, Vasan S. Ramachandran (Boston University)3, 28, Alexander P. Reiner (Fred 
Hutchinson Cancer Research Center, University of Washington)1, 2, 3, 5, 9, 11, 12, 13, 14, 15, 

20, 25, 34, Kenneth Rice (University of Washington)15, 23, Jerome I. Rotter  
(Cedars-Sinai Medical Center)1, 3, 6, 8, 11, 15, 31, Jill P. Sanders (University of Vermont)23, 
Pamela Schreiner (University of Minnesota)25, Sudha Seshadri (Boston University)18, 

28, Steve Shea (Brigham and Women's Hospital, Harvard University)28, Stephen 
Sidney (Kaiser Permanente Division of Research, Oakland, CA)25, Kevin Silverstein 
(University of Minnesota)25, David S. Siscovick (University of Washington)5, 1, 25, 
Nicholas L. Smith (University of Washington)2, 15, 20, 23, Nona Sotoodehnia 
(University of Washington)3, 15, 23, Asoke Srinivasan (Tougaloo College)29, Herman A. 
Taylor (Jackson State University, Tougaloo College, University of Mississippi 
Medical Center)5,29, Kent Taylor (Cedars-Sinai Medical Center)31, Fridtjof Thomas 
(University of Texas Health Science Center Houston)3, 22, Russell P. Tracy 
(University of Vermont)5, 9, 14, 11, 12, 15, 17, 20, 23, Michael Y. Tsai (University of 
Minnesota)9, 31, Kelly A. Volcik (University of Texas Health Science Center 
Houston)22, Chrstina L Wassel (University of California San Diego)9, 15, 31, Karol 
Watson (University of California Los Angeles)31, Gina Wei (National Heart, Lung, 
and Blood Institute)25, Wendy White (Tougaloo College)29, Kerri L. Wiggins 
(University of Vermont)23, Jemma B. Wilk (Boston University)10, 28, O. Dale Williams 
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(Florida International University)25, Gregory Wilson (Jackson State University)29, 
James G. Wilson (University of Mississippi Medical Center)1, 2, 5, 8, 9, 14, 11, 12, 17, 20, 29, 
Phillip Wolf (Boston University)28, Neil A. Zakai (University of Vermont)2, 23 

 

ISGS and SWISS 

John Hardy (Reta Lila Weston Research Laboratories, Institute of Neurology, 
University College London)18, James F. Meschia (Mayo Clinic)18, Michael Nalls 
(National Institute on Aging)2, 18, Stephen S. Rich (University of Virginia)2, 4, 7, 8, 9, 14, 

11, 15, 17, 18, 31, Andrew Singleton (National Institute on Aging)18, Brad Worrall 
(University of Virginia)18 

 

LungGO 

Michael J. Bamshad (Seattle Children's Hospital, University of Washington)4, 6, 7, 8, 10, 

11, 13, 15, 17, 27, Kathleen C. Barnes (Johns Hopkins University)2, 10, 14, 12, 15, 17, 20, 24, 30, 32, 
Ibrahim Abdulhamid (Children’s Hospital of Michigan)27, Frank Accurso (University 
of Colorado)27, Ran Anbar (Upstate Medical University)27, Terri Beaty (Johns 
Hopkins University)24, 30, Abigail Bigham (University of Washington)13, 15, 27, Phillip 
Black (Children’s Mercy Hospital)27, Eugene Bleecker (Wake Forest University)33, 
Kati Buckingham (University of Washington)27, Anne Marie Cairns (Maine Medical 
Center)27, Wei-Min Chen (University of Virginia)13, 15, 18, Daniel Caplan (Emory 
University)27, Barbara Chatfield (University of Utah)27, Aaron Chidekel (A.I. Dupont 
Institute Medical Center)27, Michael Cho  (Brigham and Women's Hospital, Harvard 
Medical School)13, 15, 24, David C. Christiani (Massachusetts General Hospital)21, 
James D. Crapo (National Jewish Health)24, 30, Julia Crouch (Seattle Children's 
Hospital)6, Denise Daley (University of British Columbia)30, Anthony Dang 
(University of North Carolina Chapel Hill)26, Hong Dang  (University of North 
Carolina Chapel Hill)26, Alicia De Paula (Ochsner Health System)27, Joan 
DeCelie-Germana (Schneider Children’s Hospital)27, Allen Dozor (New York 
Medical College, Westchester Medical Center)27, Mitch Drumm (University of North 
Carolina Chapel Hill)26, Maynard Dyson (Cook Children’s Med. Center)27, Julia 
Emerson (Seattle Children's Hospital, University of Washington)27, Mary J. Emond  
(University of Washington)10, 13, 15, 17, 27, Thomas Ferkol (St. Louis Children's Hospital, 
Washington University School of Medicine)27, Robert Fink (Children’s Medical 
Center of Dayton)27, Cassandra Foster (Johns Hopkins University)30, Deborah Froh 
(University of Virginia)27, Li Gao (Johns Hopkins University)24, 30, 32, William 
Gershan (Children’s Hospital of Wisconsin)27, Ronald L. Gibson (Seattle Children's 
Hospital, University of Washington)10, 27, Elizabeth Godwin (University of North 
Carolina Chapel Hill)26, Magdalen Gondor (All Children’s Hospital Cystic Fibrosis 
Center)27, Hector Gutierrez (University of Alabama at Birmingham)27, Nadia N. 
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Hansel (Johns Hopkins University, Johns Hopkins University School of Public 
Health)10, 15, 30, Paul M. Hassoun (Johns Hopkins University)10, 14, 32, Peter Hiatt 
(Texas Children's Hospital)27, John E. Hokanson (University of Colorado)24, Michelle 
Howenstine (Indiana University, Riley Hospital for Children)27, Laura K. Hummer 
(Johns Hopkins University)32, Jamshed Kanga (University of Kentucky)27, Yoonhee 
Kim (National Human Genome Research Institute)24, 32, Michael R. Knowles 
(University of North Carolina Chapel Hill)10, 26, Michael Konstan (Rainbow Babies & 
Children’s Hospital)27, Thomas Lahiri (Vermont Children’s Hospital at Fletcher Allen 
Health Care)27, Nan Laird (Harvard School of Public Health)24, Christoph Lange 
(Harvard School of Public Health)24, Lin Lin (Harvard Medical School)21, Xihong Lin 
(Harvard School of Public Health)21, Tin L. Louie (University of Washington)13, 15, 27, 
David Lynch (National Jewish Health)24, Barry Make (National Jewish Health)24, 
Thomas R. Martin (University of Washington, VA Puget Sound Medical Center)10, 21, 
Steve C. Mathai (Johns Hopkins University)32, Rasika A. Mathias (Johns Hopkins 
University)10, 13, 15, 30, 32, John McNamara (Children’s Hospitals and Clinics of 
Minnesota)27, Sharon McNamara (Seattle Children's Hospital)27, Deborah Meyers 
(Wake Forest University)33, Susan Millard (DeVos Children’s Butterworth Hospital, 
Spectrum Health Systems)27, Peter Mogayzel (Johns Hopkins University)27, Richard 
Moss (Stanford University)27, Tanda Murray (Johns Hopkins University)30, Dennis 
Nielson (University of California at San Francisco)27, Blakeslee Noyes (Cardinal 
Glennon Children’s Hospital)27, Wanda O'Neal (University of North Carolina Chapel 
Hill)26, David Orenstein (Children’s Hospital of Pittsburgh)27, Brian O'Sullivan 
(University of Massachusetts Memorial Health Care)27, Rhonda Pace (University of 
North Carolina Chapel Hill)26, Peter Pare (St. Paul’s Hospital)30, H. Worth Parker 
(Dartmouth-Hitchcock Medical Center, New Hampshire Cystic Fibrosis Center)27, 
Mary Ann Passero (Rhode Island Hospital)27, Elizabeth Perkett (Vanderbilt 
University)27, Adrienne Prestridge (Children's Memorial Hospital)27, Nicholas M. 
Rafaels (Johns Hopkins University)30, Bonnie Ramsey (Seattle Children's Hospital, 
University of Washington)27, Elizabeth Regan (National Jewish Health)24, Clement 
Ren (University of Rochester)27, George Retsch-Bogart (University of North Carolina 
Chapel Hill)27, Michael Rock (University of Wisconsin Hospital and Clinics)27, 
Antony Rosen (Johns Hopkins University)32, Margaret Rosenfeld (Seattle Children's 
Hospital, University of Washington)27, Ingo Ruczinski (Johns Hopkins University 
School of Public Health)13, 15, 30, Andrew Sanford (University of British Columbia)30, 
David Schaeffer (Nemours Children's Clinic)27, Cindy Sell (University of North 
Carolina Chapel Hill)26, Daniel Sheehan (Children's Hospital of Buffalo)27, Edwin K. 
Silverman  (Brigham and Women's Hospital, Harvard Medical School)24, 30, Don Sin 
(Children’s Medical Center of Dayton)30, Terry Spencer (Elliot Health System)27, 
Jackie Stonebraker (University of North Carolina Chapel Hill)26, Holly K. Tabor 
(Seattle Children's Hospital, University of Washington)6, 10, 11, 17, 27, Laurie Varlotta 
(St. Christopher’s Hospital for Children)27, Candelaria I. Vergara (Johns Hopkins 
University)30, Robert Weiss 30, Fred Wigley (Johns Hopkins University)32, Robert A. 
Wise (Johns Hopkins University)30, Fred A. Wright  (University of North Carolina 
Chapel Hill)26, Mark M. Wurfel (University of Washington)10, 14, 21, Robert Zanni 
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(Monmouth Medical Center)27, Fei Zou (University of North Carolina Chapel Hill)26 

 

SeattleGO 

Deborah A. Nickerson (University of Washington)3, 4, 5, 7, 8, 9, 11, 15, 17, 18, 19, Mark J. 
Rieder (Adaptive Biotechnologies Corporation)4, 11, 13, 15, 16, 17, 19, Phil Green 
(University of Washington), Jay Shendure (University of Washington)1, 8, 14, 16, 17, 
Joshua M. Akey (University of Washington)14, 13, 15, Michael J. Bamshad (Seattle 
Children's Hospital, University of Washington)4, 6, 7, 8, 10, 11, 13, 15, 17, 27, Carlos D. 
Bustamante (Stanford University School of Medicine)3, 13, 15, David R. Crosslin 
(University of Washington)2, 9, Evan E. Eichler (University of Washington)19, P. 
Keolu Fox2, Wenqing Fu (University of Washington)13, Adam Gordon (University of 
Washington)11, Simon Gravel (Stanford University School of Medicine)13, 15, Gail P. 
Jarvik (University of Washington)9, 15, Jill M. Johnsen (Puget Sound Blood Center, 
University of Washington)2, Mengyuan Kan (Baylor College of Medicine)13, Eimear 
E. Kenny (Stanford University School of Medicine)3, 13, 15, Jeffrey M. Kidd (Stanford 
University School of Medicine)13, 15, Fremiet Lara-Garduno (Baylor College of 
Medicine)15, Suzanne M. Leal (Baylor College of Medicine)1, 13, 15, 16, 17, 19, 20, Dajiang 
J. Liu (Baylor College of Medicine)13, 15, Sean McGee (University of Washington)13, 

15, 19, Timothy D. O’Connor (University of Washington)13, Bryan Paeper (University 
of Washington)16, Peggy D. Robertson (University of Washington)4, Joshua D. Smith 
(University of Washington)4, 16, 19, Jacob A. Tennessen (University of Washington)13, 
Emily H. Turner (University of Washington)4, 16, Gao Wang (Baylor College of 
Medicine)1,13,20  

 

WHISP 

Rebecca Jackson (Ohio State University)1, 2, 4, 5, 8, 12, 14, 15, 17, 18, 20, 34, Kari North 
(University of North Carolina Chapel Hill)1, 3, 9, 10, 13, 15, 17, 34, Ulrike Peters (Fred 
Hutchinson Cancer Research Center)1, 3, 11, 12, 13, 15, 17, 18, 34, Christopher S. Carlson 
(Fred Hutchinson Cancer Research Center, University of Washington)1, 2, 3, 5, 14, 12, 13, 15, 

16, 17, 18, 19, 34, Garnet Anderson (Fred Hutchinson Cancer Research Center)34, Hoda 
Anton-Culver (University of California at Irvine)34, Themistocles L. Assimes 
(Stanford University School of Medicine)5, 9, 11, 34, Paul L. Auer (Fred Hutchinson 
Cancer Research Center)1, 2, 3, 5, 11, 12, 13, 15, 16, 18, 34, Shirley Beresford (Fred Hutchinson 
Cancer Research Center)34, Chris Bizon (University of North Carolina Chapel Hill)3, 9, 

13, 15, 34, Henry Black (Rush Medical Center)34, Robert Brunner (University of 
Nevada)34, Robert Brzyski (University of Texas Health Science Center San 
Antonio)34, Dale Burwen (National Heart, Lung, and Blood Institute WHI Project 
Office)34, Bette Caan (Kaiser Permanente Division of Research, Oakland, CA)34, Cara 
L. Carty (Fred Hutchinson Cancer Research Center)18, 34, Rowan Chlebowski (Los 



  19 

Angeles Biomedical Research Institute)34, Steven Cummings (University of 
California at San Francisco)34, J. David Curb* (University of Hawaii)9, 18, 34, Charles 
B. Eaton (Brown University, Memorial Hospital of Rhode Island)12, 34, Leslie Ford 
(National Heart, Lung, and Blood Institute, National Heart, Lung, and Blood Institute 
WHI Project Office)34, Nora Franceschini (University of North Carolina Chapel Hill)2, 

3, 9, 10, 15, 34, Stephanie M. Fullerton (University of Washington)6, 11, 34, Margery Gass 
(University of Cincinnati)34, Nancy Geller (National Heart, Lung, and Blood Institute 
WHI Project Office)34, Gerardo Heiss (University of North Carolina Chapel Hill)5, 34, 
Barbara V. Howard (Howard University, MedStar Research Institute)34, Li Hsu (Fred 
Hutchinson Cancer Research Center)1, 13, 15, 18, 34, Carolyn M. Hutter (Fred Hutchinson 
Cancer Research Center)13, 15, 18, 34, John Ioannidis (Stanford University School of 
Medicine)11, 34, Shuo Jiao (Fred Hutchinson Cancer Research Center)34, Karen C. 
Johnson (University of Tennessee Health Science Center)3, 34, Charles Kooperberg 
(Fred Hutchinson Cancer Research Center)1, 5, 9, 14, 13, 15, 17, 18, 34, Lewis Kuller 
(University of Pittsburgh)34, Andrea LaCroix (Fred Hutchinson Cancer Research 
Center)34, Kamakshi Lakshminarayan (University of Minnesota)18, 34, Dorothy Lane 
(State University of New York at Stony Brook)34, Ethan M. Lange (University of 
North Carolina Chapel Hill)3, 5, 9, 13, 34, Leslie A. Lange (University of North Carolina 
Chapel Hill)1, 2, 3, 5, 9, 12, 13, 15, 17, 18, 20, 25, 34, Norman Lasser (University of Medicine and 
Dentistry of New Jersey)34, Erin LeBlanc (Kaiser Permanente Center for Health 
Research, Portland, OR)34, Cora E. Lewis (University of Alabama at Birmingham)25,34, 
Kuo-Ping Li (University of North Carolina Chapel Hill)9, 34, Marian Limacher 
(University of Florida)34, Dan-Yu Lin (University of North Carolina Chapel Hill)1, 3, 9, 

13, 15, 34,  Benjamin A. Logsdon (Fred Hutchinson Cancer Research Center)2, 34, Shari 
Ludlam (National Heart, Lung, and Blood Institute WHI Project Office)34, JoAnn E. 
Manson (Brigham and Women's Hospital, Harvard School of Public Health)34, Karen 
Margolis (University of Minnesota)34, Lisa Martin (George Washington University 
Medical Center)9, 34, Joan McGowan (National Heart, Lung, and Blood Institute WHI 
Project Office)34, Keri L. Monda (Amgen, Inc.)1,15, 34, Jane Morley Kotchen (Medical 
College of Wisconsin)34, Lauren Nathan (University of California Los Angeles)34, 
Judith Ockene (Fallon Clinic, University of Massachusetts)34, Mary Jo O'Sullivan 
(University of Miami)34, Lawrence S. Phillips (Emory University)34, Ross L. Prentice 
(Fred Hutchinson Cancer Research Center)34, Alexander P. Reiner (Fred Hutchinson 
Cancer Research Center, University of Washington)1, 2, 3, 5, 9, 11, 12, 13, 14, 15, 20, 25, 34, John 
Robbins (University of California at Davis)34, Jennifer G. Robinson (University of 
Iowa)9, 11, 18, 34, Jacques E. Rossouw (National Heart, Lung, and Blood Institute, 
National Heart, Lung, and Blood Institute WHI Project Office)5, 14, 17, 20, 34, Haleh 
Sangi-Haghpeykar (Baylor College of Medicine)34, Gloria E. Sarto (University of 
Wisconsin)34, Sally Shumaker (Wake Forest University)34, Michael S. Simon (Wayne 
State University)34, Marcia L. Stefanick (Stanford University School of Medicine)34, 
Evan Stein (Medical Research Labs)34, Hua Tang (Stanford University)2, 34, Kira C. 
Taylor (University of Louisville)1, 3, 13, 15, 20, 34, Cynthia A. Thomson (University of 
Arizona)34, Timothy A. Thornton (University of Washington)13, 15, 18, 34, Linda Van 
Horn (Northwestern University)34, Mara Vitolins (Wake Forest University)34, Jean 
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Wactawski-Wende (University of Buffalo)34, Robert Wallace (University of Iowa)2, 34, 
Sylvia Wassertheil-Smoller (Boston University)18, 34, Donglin Zeng (University of 
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NHLBI GO ESP Project Team 
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Michael Feolo (National Center for Biotechnology Information)12, Weiniu Gan 
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Supplemental Tables 
Table S1. Phenotypes associated with samples and cohort contributions. 

Phenotype Cohort* Sample Size 
Asthma (n=191) SARP 191 

Blind (n=9) WHI 9 

Blood pressure (n=778) 

ARIC 123 
CARDIA 115 

CHS 8 
FHS 153 
JHS 32 

MESA 42 
WHI 305 

Body mass index and type 2 
diabetes (n=637) 

JHS 110 
MESA 26 
WHI 501 

Chronic obstructive pulmonary 
disease (n=620) 

COPDGene 286 
LHS 334 

Cystic Fibrosis (n=417) CF 417 

Direct peritoneal resuscitation 
(n=943) 

ARIC 104 
CARDIA 53 

CHS 90 
FHS 61 
JHS 49 

MESA 206 
WHI 380 

Earlyonset stroke (n=491) 

ARIC 9 
CHS 1 
FHS 23 
ISGS 74 

MESA 12 
SWISS 49 
WHI 323 

Early onset myocardial 
infarction (n=1636) 

ARIC 277 
CHS 84 

Cleveland Clinic 39 
FHS 155 

HARPS 402 
JHS 104 

MGH-PCAD 142 
PennCATH 31 
TRIUMPH 97 

WHI 305 

LDL (n=625) 
ARIC 283 

CARDIA 31 
CHS 25 
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FHS 21 
JHS 58 

MESA 115 
WHI 92 

Pulmonary hypertension (n=79) PAH 79 
Ventilator free days (n=89) ALI 89 

*Acute Lung Injury (ALI); Atherosclerosis Risk in Communities (ARIC); Coronary 
Artery Risk Development in Young Adults (CARDIA); Cystic Fibrosis (CF); 
Cardiovascular Health Study (CHS); Cleveland Clinic Genebank (Cleveland Clinic); 
COPD Genetic Epidemiology (COPDGene); Framingham Heart Study (FHS); Heart 
Attack Risk in Puget Sound (HARPS); The Ischemic Stroke Genetic Study (ISGS); 
Jackson Heart Study (JHS); Lung Health Study (LHS); Multi-Ethnic Study of 
Atherosclerosis (MESA); Massachusetts General Hospital Premature Coronary 
Artery Disease Study (MGH-PCAD); Pulmonary Arterial Hypertension (PAH); A 
catheterization-lab based cohort study from the University of Pennsylvania Medical 
Center (PennCATH); Severe Asthma Research Project (SARP); Siblings with 
Ischemic Stroke Study (SWISS); Translational Research Underlying Disparities in 
Myocardial Infarction Patients' Health Status (TRIUMPH); Women's Health 
Initiative (WHI). 
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Table S2. Published demographic models in populations of Europeans ancestry. 

Models Sample 
Size 

TMRCA 
(kya) 

TOOA 
(kya) 

TGrowth 
(kya) Initial Ne 

Growth rate 
(%) 

Gutenkunst et al. 
(2009)14 22 220 140 21.2 1000 0.40 

Gravel et al. (2011)11 60 148 51 23 1032 0.38 

Tennessen et al (2012)1 1351 148 51 23* 
5.1 1032 0.307 

1.95 
Schaffner et al. (2005)15 62 425 87.5 8.75 7700 0.73# 
Coventry et al. (2010)16 10422 425 87.5 1.4 7700 9.4 
Nelson et al. (2012)17 12514 425 87.5 9.2 7700 1.7 

*Initial European expansion started at 23 kya with a growth rate of 0.307% per 
generation, followed by an accelerated population growth with the growth rate of 1.95% 
per generation at 5,115 years ago. 

#Fixed parameters that were not estimated from the data. (Growth is instantaneous to a 
fixed value of Ne=100,000, which is approximately equivalent to exponential growth 
of 0.73% pergeneration.) 
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Table S3. Average allele age (±sd) under different demographic models considering 
recent population growth in European. 

Models All SNVs (kyr) Sharing SNVs 
(kyr) 

Specific SNVs 
(kyr) 

Deleterious 
SNVs (kyr) 

Tennessen et al (2012)1 34.2±1.0 104.4±1.7 5.4±0.3 5.2±0.3 
Coventry et al. (2010)16 61.2±1.7 188.1±3.0 10.8±0.3 8.8±0.6 
Nelson et al. (2012)17 65.9±1.0 200.0±1.0 9.0±0.6 10.8±0.3 
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Table S4. Genes with excess of deleterious variants arose after the onset of the recent 
accelerated population growth. 

Gene 
Deleterious Variants Neutral Variants 

P* 
<5kyr ≥5kyr <5kyr ≥5kyr 

EAs 
LAMC1 41 0 101 42 <10-6 

ITPR3 48 0 188 77 <10-6 
ZFHX3 89 5 152 57 <10-6 

AAs 
UBR4 61 10 184 179 <10-6 

ATP1A4 17 3 49 57 10-6 
PKP4 30 2 42 40 <10-6 

KALRN 34 4 121 94 10-6 
PDE6B 17 0 60 55 2×10-6 

CPE 15 0 8 15 <10-6 
CDH12 11 0 17 34 2×10-6 

PCDHA9 24 3 189 166 <10-6 
PCDHA10 24 3 154 147 <10-6 
PCDHA11 24 3 128 134 <10-6 
KIAA0196 18 0 37 38 <10-6 

PFKP 15 0 72 88 <10-6 
ITGA8 25 1 64 63 <10-6 
PDGFD 16 0 27 22 3×10-6 
LRP1 40 2 217 157 <10-6 

MYO1E 31 2 85 66 <10-6 
PI4KA 26 2 104 99 <10-6 

SCUBE1 21 1 50 56 <10-6 

*Empirical p value was calculated by adjusting exon length in genes by simulations. 
Fisher’s exact test was used to compare the number of deleterious and neutral variants 
arose before (≥5kyr) or after (<5kyr) the onset of recent explosive population growth. 
The null distribution was produced by randomly selecting regions with corresponding 
exon length of gene from whole-exome resequencing data. Genes with p value 
passing Bonferroni correction were listed. 
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Supplemental Figures 

Figure S1. The relationship between Kinship and IBS before filtering of related or 
duplicated individuals. 

Figure S2. PCA plot for assignment of EA and AA ancestry. 

Figure S3. The distribution of SNVs with known ancestral states across exomes. 

Figure S4. An example of a coalescent tree with n=5. 

Figure S5. A demographic model with recent explosive population growth. 

Figure S6. Validation of allele age estimated by a simulation approach in a constant 
population. 

Figure S7. Effects of population growth, migration, and selection on the SFS and 
estimates of allele age. 

Figure S8. Comparison of the SFS and allele age under different demographic models 
for EAs. 

Figure S9. Influence of errors in sequencing data on estimates of average allele age. 

Figure S10. Relationship between average allele age and proportion of putatively 
deleterious variants predicted by different methods in different classes of amino acid 
changes. 

Figure S11. Comparison of neutrality index among regions with different average 
age. 

Figure S12. Relationship between average allele age and putatively deleterious 
variants predicted by different methods. 

Figure S13. Relationship between allele age and the proportion of SNVs predicted to 
be deleterious by different methods. 

Figure S14. Ratio of the probability that a deleterious variant survives to the present 
day versus that of a neutral variant as a function of age and strength of selection.  

Figure S15. The proportion of deleterious SNVs across KEGG pathways.   
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Figure S1. The relationship between Kinship and IBS before filtering of related or 
duplicated individuals. 
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Figure S2. PCA plot for assignment of EA and AA ancestry. 
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Figure S3. The distribution of SNVs with known ancestral states across exomes. In a 
1Mb sliding window analysis, the proportion of SNVs with known ancestral states is 
high and uniformly distributed across the exomes, but decreases near the telomeric or 
centromeric regions. 
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Figure S4. An example of a coalescent tree with n=5. Tk (k =5, 4, 3, 2) is coalescent 
time which measures the time from k lineages to (k-1) lineages. MRCA, most recent 
common ancestor. 
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Figure S5. A demographic model with recent explosive population growth. 
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Figure S6. Validation of allele age estimated by a simulation approach in a constant 
population. a and b show the expected allele age and its standard deviation for 
different sample sizes; c and d show the expected allele age and its standard deviation 
for different sequence lengths; e and f show the expected allele age and its standard 
deviation for different recombination rates. a-d were calculated from 1,000 replicates, 
and e-f were calculated from 100 replicates. 
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Figure S7. Effects of population growth, migration, and selection on the SFS and estimates of allele 
age. Simulations were performed based on a demographic model with recent accelerated population 
growth for EAs and AAs. a and b show the effect of different recent population growth rates (0, 
0.5%, 1.0%, 1.5%, 2.0% and 2.5% per generation in the past 5,115 years) on the SFS and allele age; 
c and d show the effect of different migration rates between populations (0, 0.5×10-5, 2.5×10-5, 
5×10-5,10-4 and 15×10-5 per chromosome per generation in the past 5,115 years) for the SFS and 
allele age; e and f show the effect of purifying selection (s=0, 0.01%, 0.1%, 1% and 5%) on the SFS 
and allele age. a, c, e for EAs and b,d,f for AAs. In each scenario, 1,000 replicates were conducted. 
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Figure S8. Comparison of the SFS and allele age under different demographic models 
for EAs. a, The SFS and estimates of allele age under different demographic models. 
b, The cumulative proportion of deleterious or all SNVs identified in 4,298 EAs as a 
function of allele age, according to three models considering explosive population 
growth. c, highlights the cumulative proportion of deleterious or all SNVs that are 
estimated to have arisen in the last 150 kyr. 
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Figure S9. Influence of errors in sequencing data on estimates of average allele age. a, 
model of sequencing errors with a default per-base error rate of x = 5.5×10-7. b, model 
of genotyping errors with an error rate of 1%, 5%, or 10%. c, model of negative calls 
with a rate of 1%, 5%, or 10%. In each model, 1,000 replicates were conducted. Error 
bars denote standard deviations. The y-axis in each panel shows the change in average 
age (i.e., average age between models with minus without errors). 

 

  



  39 

 

 

 

Figure S10. Relationship between average allele age and proportion of putatively 
deleterious variants predicted by different methods in different classes of amino acid 
changes. The changes of amino acid were classified as synonymous changes, 
nonsynonymous changes (i.e., changes within the same group and between groups), 
and changes from or to stop codons. a, Average allele age (kyr) for different classes of 
amino acid changes. b, The proportion of deleterious variants predicted by SIFT, 
PolyPhen2, LRT or MutationTaster in different classes of amino acid changes for 
nonsynonymous sites, c and d, The proportion of deleterious variants predicted by 
GERP++ and PhyloP respectively in different classes of amino acid changes for all 
coding sites. A significant negative relationship between average allele age and 
proportion of deleterious SNVs was observed in all prediction methods (i.e., SIFT, 
PolyPhen2, MutationTaster, GERP++ and PhyloP) (Spearman’s correlation, p<10-6), 
except for the LRT.  
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Figure S11. Comparison of neutrality index among regions with different average age. 
A 1Mb sliding window analysis was performed and windows were merged according 
to the percentile of their average ages. In each bin, neutrality index and its 95% 
confidence interval were calculated. 
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Figure S12. Relationship between average allele age and putatively deleterious 
variants predicted by different methods. For nonsynonymous variants, functionally 
damaging variants were predicted by four different methods: SIFT, PolyPhen2, a 
likelihood ratio test (LRT), and MutationTaster. a, The overlap of deleterious variants 
predicted by different methods. b, The average allele age for deleterious variants and 
other nonsynonymous variants. c, Variants were classified into 10 bins according to 
the percentile of conservation scores (i.e., GERP++ and PhyloP), and the average 
allele age for each bin is shown.  
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Figure S13. Relationship between allele age and the proportion of SNVs predicted to 
be deleterious by different methods. For nonsynonymous variants, deleterious variants 
were predicted by six different methods: SIFT, PolyPhen2, a likelihood ratio test 
(LRT), MutationTaster, GERP++ and PhyloP. For other variants, deleterious variants 
were predicted only by the latter two methods (i.e., GERP++ and PhyloP).  
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Figure S14. Ratio of the probability that a deleterious variant survives to the present 
day versus that of a neutral variant as a function of age and strength of selection. For 
each value, 1,000,000 replicates were performed. The shaded rectangle denotes the 
approximate time and duration of the population bottleneck, which began at 51 kyr 
and ended at 23 kyr. 
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Figure S15. The proportion of deleterious SNVs across KEGG pathways. a and b, 
The proportion of deleterious SNVs for six broad classes of KEGG pathways in EAs 
and AAs respectively versus age in kyr. Shaded regions define 95% confidence 
intervals obtained by bootstrapping. c, The proportion of deleterious SNVs for 235 
KEGG pathways. 


