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SUPPLEMENTAL INFORMATION 
 
SUPPLEMENTAL DATA 
 
Table S1 The Characteristics of Brain Modules and Corresponding Gene 
Expression Traits. Detailed information regarding module- and gene-centered 
findings of the present study (modules with 50 or more unique gene symbols), 
including module MDC, enrichment of functional categories, intra-module 
connectivity, expression values for the top hubs in each module, external signatures 
(CNS cell types, the postsynaptic density proteome, the MEMN), gene expression 
correlations to Braak stage and frontal atrophy, results from the RNA sequencing of 
microglia cells over-expressing intact or truncated TYROBP, and lists of all eSNPs 
and corresponding transcripts detected in the present study at FDR of 10%.  
 
EXTENDED EXPERIMENTAL PROCEDURES 
 
Study Populations and Clinical Data 
1647 frozen tissue samples from cerebellum (CB), visual cortex (VC) BA17 and 
dorsolateral prefrontal cortex (PFC) BA9 were provided by the Harvard Brain Tissue 
Resource Center (HBTRC) at McLean Hospital (Belmont, MA). These regions were 
selected because PFC is commonly affected in LOAD while VC and CB remain less 
affected throughout most of the disease progression (Braak and Braak, 1991). All 
autopsied brains, were collected from subjects with LOAD diagnosis or from normal 
non-demented subjects, for whom both the donor and the next of kin had completed 
the HBTRC informed consent (http://www.brainbank). Tissue collection and the 
research were conducted according to the HBTRC guidelines 
(http://www.brainbank). The HBTRC samples were primarily of Caucasian ancestry, 
as only eight non-Caucasian outliers were identified and therefore excluded for 
further analysis. Post-mortem interval (PMI) was 17.8+8.3 hours, sample pH was 
6.4±0.3 and RNA integrity number (RIN) was 6.8±0.8 for the average sample in the 
overall cohort. These were composed of 376 LOAD patients and 173 non-demented 
subjects. Braak stage, general and regional atrophy, gray and white matter atrophy 
and ventricular enlargement were assessed and catalogued by pathologists at 
McLean Hospital (Belmont, MA). The clustering of LOAD related pathology traits and 
age is shown in Figure 2. It is of note that age formed a separate cluster from most 
of the LOAD neuropathology, however hippocampal atrophy was positively 
correlated with age (r = 0.28) while Braak staging of LOAD pathology was negatively 
correlated with age (r = -0.15). The negative correlation between age and Braak 
stage in the HBTRC sample most likely reflects the higher degree of Tau-related 
neurofibrillary tangle load associated with the earlier onset and more severe LOAD 
cases that skew the correlation structure, as has been previously noted in combined 
familial and sporadic LOAD cases (Nochlin et al., 1993). Finally, for the 
immune/microglia comparative study we used a brain tissue sampling (PFC, CB and 
VC) of 194 Huntington disease (HD) patients from the HBTRC, where each of the 
582 HD patient sample went through identical procedure as described for the LOAD 
and non-demented brain samples. In addition, the severity of pathology in the HD 
autopsy brains was determined from the Vonsattel grading system (Vonsattel et al., 
1985) and the HTT CAG repeat allele size was determined using a modification of 
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previously described polymerase chain reaction amplification assay (Warner et al., 
1993).  

Brain samples for testing the replication  of the TYROBP differential 
expression were obtained from 21 National Alzheimer’s Coordinating Center (NACC) 
brain banks and from the Miami Brain Bank as previously described (Myers et al., 
2007; Webster et al., 2009). The Rush Alzheimer’s Disease Center series consists of 
two cohorts: the Religious Orders Study (ROS) and the Memory and Aging Project 
(MAP) (Bennett et al., 2006a; Bennett et al., 2006b; Bennett et al., 2005). cRNA was 
hybridized as before to Illumina HT-12 Expression Bead Chip (48,803 transcripts) via 
standard protocols using an Illumina Bead Station 500GX (Webster et al 2009). 
Disease status included 377 with LOAD, 119 classified with mild cognitive 
impairment (MCI) and 359 healthy non-demented controls.  Brain regions sampled in 
these patients were 726 prefrontal and 129 temporal cortex samples. 
 
Array Design, Gene Expression Normalization, Covariate Analysis and 
Genotyping  
RNA preparation and array hybridizations applied custom microarrays manufactured 
by Agilent Technologies consisting of 4,720 control probes and 39,579 probes 
targeting transcripts representing 25,242 known and 14,337 predicted genes. One 

g of total RNA from each of the 2229 (LOAD, non-demented, HD) brain tissues was 
reverse transcribed and labeled with either Cy3 or Cy5 fluorochrome. Purified Cy3 or 
Cy5 complementary RNA was hybridized to at least two single microarrays with fluor 
reversal for 24 hours in a hybridization chamber, washed, and scanned using a laser 
confocal scanner. Arrays were quantified on the basis of spot intensity relative to 
background, adjusted for experimental variation between arrays using average 
intensity over multiple channels, and fitted to an error model to determine 
significance (type I error) as previously described (Emilsson et al., 2008). This 
microarray dataset is MIAME compliant and the raw gene expression data for all 
hybridizations together with information related to demographics, disease state 
(LOAD or non-demented) and technical covariates (pH, RIN, PMI, batch, 
preservation method) are available via the GEO database (GEO accession number 
GSE44772 including the regional-specific subseries GSE44768, GSE44770, 
GSE44771). 

Gene expression was reported as the mean-log ratio of individual microarray 
intensities relative to average intensities of all samples. Gene expression data were 
generated using Rosetta Resolver gene expression analysis software (version 7.0, 
Rosetta Biosoftware) and MATLAB (The MathWorks). To remove bias in expression 
profiles related to potential latent variables unrelated to underlying biological 
processes, we implemented a normalization method based on control probes 
present on the microarrays. We separated the control probes into two classes: (1) 
specialty probes, such as spike-in probes or other probes designed to monitor the 
quality of the microarrays; and (2) border probes used to describe the geometry of 
the microarray. We then identified the Principal Components (PC) explaining the 
variability of each control probe class and then identified the same components from 
a randomly permuted data set. We performed 10,000 permutations for each set of 
control probes and selected Principal Components with P-values defined as {number 
of [var(random-PCi) >var(PCi)]}/(number of permutations) < 10−4. The expression 
data in each tissue for each probe are thus the residuals from a linear model fitting 
incorporating the significant PCs. 
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Next we analyzed the contribution of each of the experimental covariate's age 
gender, sex and technical covariates. The Kolmogorov-Smirnov (KS) test was used 
to capture the difference of the correlation P-value distributions for each covariate 
per brain region and condition. Figure S1 shows the correlation P-values between a 
specific covariate and all the probes based on the expression data before (red curve, 
raw) and after (black curve, corrected) the adjustment in LOAD or non-demented 
brains. Particular attention was paid to established covariates of mRNA quality that 
have been demonstrated in brain tissues, which included: (1) Extreme confounding 
of demographic variables in disease vs. controls; it was not possible to match 
samples based on demographic variables including age, sex, and ethnicity as many 
of these factors differ in their distributions substantially across the disease groups. 
Ethnicity was determined using STRUCTURE resulting in the exclusion of eight 
outliers (non-Caucasians), which were removed from all studies. (2) Pre-/post-
mortem quantitative and quality factors including PMI, RIN, tissue pH status, manner 
of death and/or agonal state. Seven samples with RIN<5 were removed from the 
analysis.  (3) Batch effects; day-to-day variability in the amplification process can 
influence the observed gene expression, even when profiled against a common-pool.  
For this particular data set, the batch effects are further exacerbated by the two 
additional facts: (i) the demographic compositions of the two batches differ, and (ii) 
for technical reasons, as it is preferable to have your pool sample be a 
representation of the greater population (mean-log ratio of individual microarray 
intensities was relative to average intensities of all samples in the final set). In 
summary, the distribution of P-values obtained from modeling the covariates listed 
above strongly suggest that adjusting for them would improve the downstream 
analysis steps. Therefore we chose a robust linear regression model for covariate 
corrections as rlm(expression~RIN + pH + PMI +age + batch + preservation + 
gender) and then the residuals were used for further testing including the genetics of 
gene expression, network construction, differential gene expression and gene 
expression clinical trait correlations carried out in the present study. 

DNA isolation was performed as previously described (Emilsson et al., 2008). 
Each sample was genotyped on two different platforms, the IlluminaHumanHap650Y 
array and a custom Perlegen 300K array (a focused panel for detection of singleton 
SNPs). Counting only the union of markers from both genotyping platforms (114,925 
SNPs were in the intersection), a total of 838,958 unique SNPs were used for the 
analysis. Finally, APOE genotypes were obtained through restriction fragment length 
polymorphism (RFLP) analysis (Lai et al., 1998).  
 
Constructing the Multi-tissue Co-expression Networks 
We constructed a multi-tissue co-expression network that simultaneously captured 
the intra- and inter-tissue gene-gene interactions between the LOAD and normal 
states. These networks can be characterized only when multiple tissues are 
monitored in a population of individuals donating all tissues (PFC, CB and VC).  For 
construction of the multi-tissue brain network, we used the top one-third (T1) or 
13,193 of the most variable genes (inter-individual variability) in a given tissue and 
physiological state (LOAD or non-demented). The most variable gene expression 
traits in the cohort were defined based on a previously described and validated error 
model testing the intensity between the experimental and reference channel, to 
obtain P-values for each individual expression trait and then compute the standard 
deviation (SD) of –log10(P-value) for each trait over all samples profiled for a given 
tissue. Then we rank ordered all of the genes profiled in each tissue based on this 



Zhang et al. “Tracing Multi-System Failure in LOAD to Causal Genes” 
 

-4- 

 

SD value (rank ordered in descending order).  Genes that fall at the top of this rank 
ordered list can be considered as the most differentially expressed or variable genes 
in the study.  We have previously shown that this type of ranking approach well 
captures the most active genes in a given set of tissue samples (Emilsson et al., 
2008; He et al., 2003).  

Specifically, for each of the three T1 data sets we first assigned each gene a 
unique identifier by combining probe ID and tissue name, then aligned the samples, 
and finally merged the three sets into a multi-tissue expression data set which 
included 39,579 genes and 129 AD samples. The combined 39,579 genes were then 
mapped to the three tissues in normal non-demented data set in a supervised 
manner, which led to another data set of 39,579 genes and 99 normal samples. The 
LOAD and normal multi-tissue data sets were independently processed through the 
weighted gene co-expression network analysis (Zhang and Horvath, 2005). The 
weighted network analysis begins with a matrix of the Pearson correlations between 
all gene pairs, then converts the correlation matrix into an adjacency matrix using a 
power function f(x)=xβ. The parameter β of the power function is determined in such 
a way that the resulting adjacency matrix, i.e., the weighted co-expression network, 
is approximately scale-free. To measure how well a network satisfies a scale-free 
topology, we use the fitting index proposed by Zhang et al. (Zhang and Horvath, 
2005), i.e., the model fitting index R2 of the linear model that regresses log(p(k)) on 
log(k) where k is connectivity and p(k) is the frequency distribution of connectivity. 
The fitting index of a perfect scale-free network is 1. The connectivity between genes 
or kij is a transformed correlation between the expression profiles of two genes, 
|r(i,j)|β, with r as the Pearson correlation coefficient. The parameter β (>0) of the 
power function is determined in such a way that the global probability distribution of 
the resulted connectivity values for all the gene pairs is scale free. Thus, kij is a 
continuous value ranging from 0 to 1. 

To explore the modular structures of the co-expression network, the 
adjacency matrix is further transformed into a topological overlap matrix (TOM) 
(Ravasz et al., 2002). As the topological overlap between two genes reflects not only 
their direct interaction but also their indirect interactions through all the other genes 
in the network, previous studies (Ravasz et al., 2002; Zhang and Horvath, 2005) 
have shown that topological overlap leads to more cohesive and biologically more 
meaningful modules. To identify modules of highly co-regulated genes, we used 
average linkage hierarchical clustering to group genes based on the topological 
overlap of their connectivity, followed by a dynamic cut-tree algorithm to dynamically 
cut clustering dendrogram branches into gene modules (Langfelder et al., 2008).  To 
distinguish between modules, each module was assigned a unique color identifier, 
with the remaining, less well connected genes colored grey. To compare and 
contrast two multi-tissue networks, we combined their TOM heat-maps into a single 
large network. In the combined heat-map, the upper panel shows the hierarchical 
clustering on the TOM of the LOAD network while the color bar below represents the 
gene modules. Similarly, the lower panel represents the TOM from normal multi-
tissue network.  The color intensity in the map represents the interaction strength 
between genes. This connectivity map highlights how genes in the multi-tissue 
transcriptional networks fall into distinct network modules, where genes within a 
given module are more highly interconnected with each other (blocks along the 
diagonal of the matrix) than with genes in other modules. 
  
Defining the Modular Differential Connectivity  
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We developed two measures to quantify the difference between the connectivity 
among a set of genes (or module, denoted  ) in LOAD vs. normal non-demented 
networks. Given a set of N genes and two networks, x and y, the first MDC 
measurement is the ratio of the average connectivity among the N genes in the 
network x to that among the same gene set in network y, specified by the formula 
below: 
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where, kij is the connectivity between two genes i and j in a given network.  
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The significance or false discovery rate (FDR) of the statistic MDC can be accessed 
by permuting the data underlying the two networks. We differentiate two scenarios, 

gain of connectivity ( ),( yx > 1) and loss of connectivity ( ),( yx < 1). Given M 

permutations, FDR of MDC is computed as follows: 
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where xp and yp are the networks derived from the permuted data. To rigorously 
access significance of MDC, we estimate two types of FDR estimates, one based on 
shuffled samples, i.e. networks with non-random nodes but random connections, and 
the other based on shuffled gene labels, i.e. networks with random nodes but non-
random connections, and then we select the larger value as the final FDR estimate.  
 
Differential Gene Expression and Module Relevance to LOAD Pathology 
To identify differential expression of individual genes between LOAD and non-
demented controls, Agilent gene expression data generated for each brain region 
was first adjusted using robust linear regressions for age, gender, PMI, tissue 
preservation method, tissue pH, RIN, and sample preparation batch.  The residuals 
following regression were analyzed by ANOVA to identify reporters which showed 
differential expression between LOAD and control samples in each tissue, and a 
Monte Carlo analysis was performed by permuting sample order to estimate the 
false-discovery rate (FDR).  Differentially expressed reporters were defined as those 
with a Bonferroni corrected P-value < 0.05; this corresponds to a nominal P < 

2.4610-7 and is well below the 0% FDR threshold for all three brain regions tested. 
To examine how each gene module was related to LOAD neuropathology 

traits, we first performed principal component analysis (PCA) for each module and 
then computed module-trait relevance using two complementary approaches: (i) the 
correlation between the first principal component (Module Eigengene) and each trait 
and (ii) the correlation (the square root of R-square) between the top principal 
components and each trait through multivariate regression model. The significance 
(P-value) and FDR of each correlation was also calculated.  FDR was estimated 
through random permutation of sample names of the trait data. A module is 
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associated with a trait if both correlation P-value and FDR are below 0.05. The total 
number of traits associated with a module is used to quantify the association of a 
module with LOAD.  
 
Detection of eSNPs in the Different Brain Regions 
Each of the 838,958 SNPs was tested for association to all 39,579 expression traits 
using Kruskal Wallis test based on the residuals, left after correction for covariates 
using robust linear regression as described in the section ‘Array Design, Gene 
Expression Normalization, Covariate Analysis and Genotyping’. Expression 
quantitative trait loci (e)QTLs for gene expression traits were determined by 
identifying the SNP most strongly associated with each expression trait profiled on 
the array over all the 838,958 genotyped SNPs. Cis analysis was limited to SNPs 
located within 1 Mb of either side of the transcription start or end within the gene 
body, while trans effects were defined as the associated SNPs located on a different 
chromosome to the physical location of the corresponding probe (Emilsson et al., 
2008). The association P-value was adjusted to control for testing of multiple SNPs 
and expression traits using two different methods: (1) a highly conservative 
Bonferroni correction method to constrain the study-wise significance level, and (2) 
an empirical FDR method (Storey and Tibshirani, 2003) that constrains the overall 
rate of false positive events. For cis eQTL, to achieve a study-wise significance level 
of 0.05, the Bonferroni adjusted P-value threshold was computed as 
0.05/(39,579×Ni), where Ni  denotes the number of SNPs tested for trait i within the 
two Mb window, over all 39,579 expression traits tested. The nominal P-value to 
meet this significance threshold is 3.0 × 10−8. The Bonferroni adjustment method can 
be conservative when there is dependence among the expression traits and among 
the SNP genotypes. Given that strong correlation structures exist among expression 
traits and among SNP genotypes in a given linkage disequilibrium (LD) block, the 
Bonferroni adjustment may be overly conservative. Therefore, we used an empirical 
FDR method based on permutations that accounts for the correlation structures 
among the expression traits and among the SNP genotypes. We constrained the 
empirically determined FDR to be less than 10%. Here, the FDR was estimated as 
the ratio of the average number of eQTLs found in datasets with randomized sample 
labels to the number of eQTLs identified in the original data set. Since the number of 
tests was large, we found the empirical null distribution was very stable and ten 
permutation runs were sufficient for convergence to estimate FDR. FDR computation 
was performed separately for cis and trans associations resulting in nominal P-value 
cutoffs of 5.0 × 10−5 and 1.0 × 10−8 for cis and trans eQTLs, respectively. The 
significance of the trans eQTL was also assessed by the Bonferroni method and by 
constraining the empirically determined FDR to be less than 10%. In the case of 
trans eQTL, all 838,958 SNPs were tested for association to each of the 39,280 
expression traits. Therefore, the Bonferroni adjusted P-value threshold was 
computed as 0.05/(838,958×39,579) = 1.5 × 10−12.  Table S1 lists all cis and trans 
acting eSNPs detected in each brain region and condition at FDR of 10% and 
provides nominal P-values as well. 
 For the present work we pay particular attention to cis acting eSNPs for the 
following reasons: (1) for construction of causal probabilistic Bayesian networks as 
described in the section ‘Reconstruction of the Bayesian Networks and Identification 
of Key Causal Regulators’ and (2) for studying the enrichment of eSNPs in LOAD 
associated modules. Brain eSNPs were compared to the 111 gene modules 
identified from the multi-tissue gene co-expression network analysis and the 
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enrichment of cis eSNPs tested using the Fisher’s exact test (FET) to access the 
significance of the overlap between each module and cis eSNPs, correcting for 
number of modules as eSNPs are regarded as a single category.  
 
Reconstruction of the Bayesian Networks and Identification of Key Causal 
Regulators 
Reconstruction of the Bayesian networks: Bayesian networks are directed acyclic 
graphs in which the edges of the graph are defined by conditional probabilities that 
characterize the distribution of states of each node given the state of its parents. The 
network topology defines a partitioned joint probability distribution over all nodes in a 
network, such that the probability distribution of states of a node depends only on the 
states of its parent nodes: formally, a joint probability distribution ( )p X  on a set of 

nodes X  can be decomposed as ( ) ( | Pa( ))i i

i

p X p X X , where Pa( )iX  represents 

the parent set of iX .  In our networks, each node represents transcription 

expression of a gene.  These conditional probabilities reflect not only relationships 
between genes, but also the stochastic nature of these relationships, as well as 
noise in the data used to reconstruct the network.   
 Bayes formula allows us to determine the likelihood of a network model M  
given observed data D  as a function of our prior belief that the model is correct and 
the probability of the observed data given the model:  ( | ) ( | )* ( )P M D P D M P M .  

The number of possible network structures grows super-exponentially with the 
number of nodes, so an exhaustive search of all possible structures to find the one 
best supported by the data is not feasible, even for a relatively small number of 
nodes.  We employed Monte Carlo Markov Chain (MCMC) (Madigan, 1995) 
simulation to identify potentially thousands of different plausible networks, which are 
then combined to obtain a consensus network (see below).  Each reconstruction 
begins with a null network.  Small random changes are then made to the network by 
flipping, adding, or deleting individual edges, ultimately accepting those changes that 
lead to an overall improvement in the fit of the network to the data.  We assess 
whether a change improves the network model using the Bayesian Information 
Criterion (BIC)(Schwarz, 1978), which avoids over-fitting by imposing a cost on the 
addition of new parameters.  This is equivalent to imposing a lower prior probability 

( )P M  on models with larger numbers of parameters.  

Although edges in Bayesian networks are directed, we can’t infer causal 
relationships from the structure directly in general.  For example, in a network with 

two nodes, 1X and 2X , the two models 1 2X X  and 2 1X X  have equal 

probability distributions as 
1 2 2 1 1 1 2 2( , ) ( | ) ( ) ( | ) ( )p X X p X X p X p X X p X  .  Thus, by the 

data itself, we can’t infer whether 1X  is causal to 2X , or vice versa.  In a more 

general case, a network with three nodes, 1X ,  2X , and 3X , there are multiple 

groups of structures that are mathematically equivalent.   For example, the following 

three different models,
1 2 2 3M1: ,X X X X  , 

2 1 2 3M2 : ,X X X X  , and 
2 1 3 2M3: ,X X X X  , are Markov equivalent (which means that they all encode for 

the same conditional independent relationships).  In the above case, all three 

structures encode the same conditional independent relationship, 
1 3 2|X X X ,  1X  

and 3X  are independent conditioning on 2X , and they are mathematically equal 
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Thus, we cannot infer whether 1X  is causal to 2X  or vice versa from these types of 

structures.  However, there is a class of structures, V-shape structure (e.g. 
1 2 3 2Mv : ,X X X X  ), which has no Markov equivalent structure.  In this case, we 

can infer causal relationships.   There are more parameters to estimate in the Mv 
model than M1, M2, or M3, which means a large penalty in BIC score for the Mv 
model.  In practice, a large sample size is needed to differentiate the Mv model from 
the M1, M2, or M3 models. 

Incorporating genetic data as a structure prior in the Bayesian network 
reconstruction process: In general, Bayesian networks can only be solved to Markov 
equivalent structures, so that it is often not possible to determine the causal direction 
of a link between two nodes even though Bayesian networks are directed graphs.  
However, the Bayesian network reconstruction algorithm can take advantage of the 
experimental design by incorporating genetic data to break the symmetry among 
nodes in the network that lead to Markov equivalent structures, thereby providing a 
way to infer causal directions in the network in an unambiguous fashion (Zhu et al., 
2004).  We modified the reconstruction algorithm to incorporate eSNP data as priors 
(see schematic Figure S3), in the following way:  genes with cis eSNP (Schadt et al., 
2008) are allowed to be parent nodes of genes without cis eSNPs, but genes without 

cis eSNPs are not allowed to be parents of genes with cis eSNPs, 0)(  cistransp . 

We have shown that integrating genetic data such as cis acting eSNPs or eQTLs 
(excluding edges into certain nodes) improves the quality of the network 
reconstruction by simulations (Zhu et al., 2007) and by experimental validations (Zhu 
et al., 2004; Zhu et al., 2008).  We note that in applying this particular version of the 
Bayesian network reconstruction algorithm (i.e. incorporating genetic information as 
a prior) and if genetic information is not available or is ignored, the population is 
simply treated as a population with random genetic perturbations.   

Averaging network models: Searching optimal Bayesian network structures in 
a given dataset is a NP-hard problem. We employed an MCMC method to do local 
search of optimal structures as described above. As the method is stochastic, the 
resulting structure will be different for each run. In our process, 1,000 Bayesian 
networks were reconstructed using different random seeds to start the stochastic 
reconstruction process. From the resulting set of 1,000 networks generated by this 
process, edges that appeared in greater than 30% of the networks were used to 
define a consensus network. A 30% cutoff threshold for edge inclusion was based on 
our simulation study (Zhu et al., 2007), where a 30% cutoff yields the best tradeoff 
between recall rate and precision. The consensus network resulting from the 
averaging process may not be a Bayesian network (a directed acyclic graph). To 
ensure the consensus network structure is a directed acyclic graph, edges in this 
consensus network were removed if and only if (1) the edge was involved in a loop, 
and (2) the edge was the most weakly supported of all edges making up the loop.  

Bayesian network for individual co-expression module: The computational 

complexity of our MCMC method described above is expressed as 
4O( )N , where the 

number of nodes included in the network reconstruction process is N .  It is 

practically impossible to construct a global Bayesian network including all 39,000 
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genes from three different brain regions.  Thus, we constructed a Bayesian network 
for each individual co-expression module.  Following the procedure described above, 
1,000 Bayesian networks were reconstructed using different random seeds to start 
the reconstruction process. From the resulting set of 1,000 networks generated by 
this process, edges that appeared in greater than 30% of the networks were used to 
define a consensus network. Our previous simulation study shows that the 30% 
inclusion threshold results in a stable structure and achieves the best tradeoff 
between precision and recall (Zhu et al., 2007).   

Identification of key causal regulators: For each Bayesian network of 
individual modules, we further identified the regulators by examining the number of 
N-hob downstream nodes (NHDN) for each gene in the directed network (Wang et 
al., 2012; Yang et al., 2010; Zhu et al., 2007). For a given network, let μ be the 
numbers of N-hop downstream nodes and d be the out degrees for all the genes. 
Genes with a number of NHDN greater than )(  , were nominated as causal 

regulators. The regulators with degree above )(2 dd  , where d denotes the 

number of downstream genes, become key causal regulators of a corresponding 
network module associated with LOAD differential connectivity. These criteria 
identified genes with number of downstream nodes and number of out links 
significantly above the corresponding average value. 

 
Mouse Microglia Cultivation, Cell Transduction and Flow Cytometry Analysis 
Embryonic stem cell-derived microglia cells (ESdM) were generated from C57BL/6 
ES cells (ATCC number SCRC-1002) and were shown to be very similar to primary 
cultured microglia both phenotypically and functionally as previously described 
(Beutner et al., 2010). ESdM were cultured under serum-free conditions in medium 
consisting of DMEM/F12 (Gibco) supplemented with 1% N2 supplement (Invitrogen), 
0.5 mM L-Glutamine (Gibco), 15 µg/ml D-glucose (Sigma), and 100µg/ml 
penicillin/streptomycin (Gibco). After reaching a confluency of more than 80%, cells 
were split using cell scrapers (Sarstedt), suspended in medium, centrifuged and 
plated in fresh medium.  

Lentiviral vectors of the third generation (pLenti6/V5, Invitrogen) were used for 
transduction of microglia (ESdM). The CMV promoter in the pLenti6/V5 vector was 
replaced by the elongation factor-1 α (EF1α) promoter. Full length mouse Tyrobp 
(cds from ntd 115 to 393, accession NM_011662) and truncated mouse Tyrobp (with 
the ITAM motifs removed, cds from ntd 115 to 324, accession NM_011662) were 
tagged with the FLAG sequence at the 5', HA sequence at the 3' and the IgK leader 
sequence and cloned independently downstream of the EF1α promoter. An IRES-
enhanced green fluorescent protein (eGFP) gene was inserted directly down-stream 
of the Tyrobp sequences.  The correct nature of all cloned sequences was confirmed 
by automated sequencing (Seqlab, Germany). For over-expression studies, 
microglia (ESdM) were transduced using the corresponding IRES-eGFP constructs 
containing either full length mouse Tyrobp or truncated Tyrobp (ITAM motifs 
removed). For a control, microglia (ESdM) were transduced with the modified pLenti 
vector expressing only IRES-eGFP. Lentiviral transduction was performed using the 
ViraPower transduction kit (Invitrogen). Supernatant was removed 24 hours after 
infection and replaced with medium. Cells expressing eGFP were isolated by flow 
cytometry sorting (BD, DiVacellsorter) to obtain a pure population. We confirmed 
successful over-expression of the transduced genes through the flow cytometry 
analysis that detects the expression levels in single cells. Further, we detected 
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comparable protein expression levels in the flow cytometry between the full-length 
Tyrobp and truncated Tyrobp transduced microglial cell lines as shown in Figure S6.  
 
RNA Sequencing, Sample Preparation and Data Analysis 
To access the genome-wide gene expression changes in response to the 
perturbation of Tyrobp, we prepared twelve samples from mouse microglia cell lines, 
four from each of the three previously described groups: full length Tyrobp over-
expressing cells, truncated Tyrobp over-expressing cells and GFP expressing control 
cells.  For each sample, about one microgram of total RNA was used for the 
preparation of the sequence library using RNA TruSeq Kit supplied by Illumina (Cat # 
1004814). Briefly, rRNA was depleted from total RNA using ribozero kit (Invitrogen) 
to enrich polyadenylated coding RNA and non-coding RNA.  The ribominus RNA 
was then fragmented in the presence of divalent cations at 94oC.  The fragmented 
RNA was converted into double stranded cDNA. After polishing the ends of the 
cDNA, adenine base was added at the 3’ ends following which Illumina supplied 
specific adaptors were ligated. The adaptor ligated DNA was size selected to get an 
average of 200 bp insert size using AmpPure beads, and amplified by 15 cycle PCR. 
The PCR DNA was then purified using AmpPure beads to get the final sequence 
library ready for sequencing. The insert size and DNA concentration of the sequence 
library was determined on Agilent Bioanalyzer.  Each RNA sequence library was 
layered on one of the eight lanes of the Illumina flow cell at appropriate concentration 
and bridge amplified to get around 35-40 million raw reads. The DNA reads on the 
flow cell were then sequenced on HiSEq 2000 using 100 bp single end recipe. The 
rate of sequencing was around 1.2 hours per base sequenced. Read mapping was 
done using the TopHat (Trapnell et al., 2009) RNA-seq aligner. We allow up to 2 
mismatches in each aligned segment and keep only reads mapping less than 5 
times in the genome using the default quality cutoffs. The resulting alignments to 
genomic intervals and predicted splice sites are stored as a binary BAM file (Li et al., 
2009).  

Differential gene expression with a statistical significance P<0.05 (12 tests), 
based on a t-test, was used to identify the differentially expressed gene sets. This 
yielded 2638 and 3415 differentially expressed genes for the full length Tyrobp and 
the truncated Tyrobp expressions, respectively.  The mean FDR for the two 
signatures was 2.4% and 1.8%, respectively. To compute the FDR, we first 
constructed a pair of random case and control groups, each of which was comprised 
of two samples from a true case group and two from a true control group, then 
selected the most differentially expressed genes based on the same criteria. The 
FDR was the percentage of the original differentially expressed genes which were 
found in the gene pool based on the permutation.  Such a procedure was applied to 
all 36 possible permutations. 
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Institute Brain Donation Program of Sun City, Arizona  (NIA #P30 AG19610; Arizona 
Alzheimer’s Disease Core Center, Arizona Department of Health Services, contract 
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Rogers, PhD,  Thomas G. Beach, MD, PhD, Lucia I. Sue University of Miami/NPF 
Brain Endowment Bank: Deborah C. Mash, MD, Margaret J Basile, Mitsuko Tanaka 
Oregon Health & Science University: Randy Wotljer, PhD Newcastle Brain Tissue 
Resource (funding via the Medical Research Council, local NHS trusts and 
Newcastle University): C.M. Morris, MD, Ian G McKeith, Robert H Perry MRC 
London Brain Bank for Neurodegenerative Diseases (funding via the Medical 
Research Council): Simon Lovestone, Md PhD, Safa Al-Sarraj. MD, Claire Troakes, 
South West Dementia Brain Bank (funding via numerous sources including the 
Higher Education Funding Council for England (HEFCE), Alzheimer’s Research 
Trust (ART), BRACE as well as North Bristol NHS Trust Research and Innovation 
Department and DeNDRoN): Seth Love, MD, Patrick Kehoe, PhD, Laura Palmer, 
The Netherlands Brain Bank (funding via numerous sources including Stichting MS 
Research, Brain Net Europe, Hersenstichting Nederland Breinbrekend Werk, 
International Parkinson Fonds, Internationale Stiching Alzheimer Onderzoek): Inge 
Huitinga, MD, Marleen Rademaker, Michiel Kooreman, Institut de Neuropatologia, 
Servei Anatomia Patologica, Universitat de Barcelona: Isidre Ferrer Abizanda, MD, 
PhD, Susana Casas Boluda. 
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Figure S1 Correcting for Covariate Effects on the Expression Data in the Non-
demented and LOAD Brains, Related to Figure 1. Each plot shows the distribution 
of the correlation P-values (x-axis) between a specific covariate and all the probes 
based on the expression data before (red curve, raw) and after the adjustment (black 
curve, corrected). The Kolmogorov-Smirnov (KS) test was used to capture the 
difference of the correlation P-value distributions. The D-statistics and P-values of 
the KS test are shown here. Y-axis denotes the frequency, or the fraction of genes 
showing correlation to a given covariate 
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Figure S2 Brain Cis eSNPs and Their Enrichment in Modules, Related to Figure 
4. (A) The number and overlap of all cis eSNPs detected in the different brain 
regions in the present study at FDR of 10%. Table S1 lists all cis and trans eSNPs 
detected in the present study. Detailed statistical procedure related to the eSNP 
detection is provided in the Extended Experimental Procedures. (B) We tested the 
enrichment of brain eSNPs in the differentially connected modules of the multi-tissue 
co-expression network in LOAD as per brain region. Here we show the VC and CB 
modules with at least 100 gene members and showing significant enrichment of 
brain eSNPs (Figure 4C highlights eSNP enrichment in PFC).   
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Figure S3 Schematic Drawing for Deriving Causal Gene-Gene Relationships 
from Gene Expression and eSNP Data, Related to Experimental Procedures. 
Correlations between gene expression values alone do not indicate the true causal 
structure of gene networks. Our goal is to identify the true causal structure between 
transcripts (A) given observed correlation between gene expression (B), through a 
combination of model evaluation and incorporation of genetic priors as “causal 
anchors” (C-E). There are many possible causal relationships between even small 
groups of genes (C) and we use the Bayesian Information Criterion (BIC) to evaluate 
the posterior probability of each structure (shown in C), given the expression data. 
Several of these model structures may be statistically indistinguishable (D). 
Therefore, additional information is required to determine which of these models 
most accurately represents the data. We use a hard prior to put genes with strong 
cis eSNPs as head nodes (causal anchors) to distinguish these models (E). This is 
justified because genetic perturbations (cis eSNPs in the case of this dataset) always 
precede changes in expression, and conversely expression changes do not lead to 
DNA alterations.  
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Figure S4 Ranking of Causal Regulators, Differential Expression and Over-
expression of TYROBP, Related to Table 1. (A) There were eight common causal 
regulators for all immune networks. We used a combined ranking score based on 
degree regulated nodes in the network related to each of the common causal 
regulators and the significance of the differential expression in LOAD brains, where 
TYROBP ranked the highest (see Results).  (B) TYROBP levels in PFC were 
compared between 377 LOAD patients, 119 with the diagnosis of mild cognitive 
impairment (MCI) and 359 non-demented controls. The raw t-test P-value was 5.1e-
05 while the Benjamini-Hochberg adjusted P-value=5e-04. See Extended 
Experimental Procedures for details on study groups. 
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Figure S5 The Microglia Pathogen Phagocytosis Pathway, Related to Figure 5. 
Genes derived from the LOAD immune and microglia enriched module are marked in 
red. Pathogens are recognized by complement C1q or immunoglobulin (IgG) that 
bind to microglia complement receptors (e.g. ITGAM/ITGB2) or Fc-receptors (e.g. 
FCGR1) that signal via the immunoreceptor tyrosine-based activation motif (ITAM)-
containing adaptor molecules TYROBP or FCER1G, respectively. Alternatively, 
pathogens are directly recognized by classical innate immune receptors (e.g. 
TREM2) that require the interaction with TYROBP for further signalling.  
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Figure S6 Over-expression of Intact or Truncated TYROBP in Mouse Microglia 
Cells, Related to Figure 6. Flow cytometry analysis of microglia transduced with full 
length mouse TYROBP-IRES-GFP (TYROBP full length), truncated mouse 
TYROBP-IRES-GFP (TYROBP truncated), green fluorescent protein (GFP) control 
vector or untransduced microglia. Transduced GFP proteins were detected at similar 
levels in the microglial cells over-expressing either full length TYROBP, truncated 
TYROBP or the control vector. Untransduced microglia cells were used as control. 
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