
Supporting Information

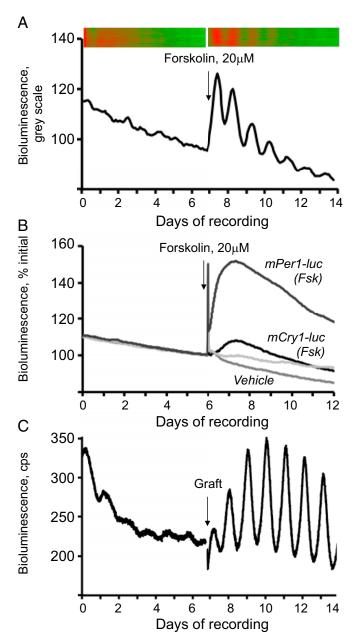

Maywood et al. 10.1073/pnas.1220894110


Fig. 51. Circadian *mCry1* reporter expressed in suprachiasmatic nucleus (SCN) and peripheral tissues. (A) Schematic of genomic *mCry1* region (-1,504 to +107) used to create circadian reporter, indicating location of included *E/E'* boxes and RORE elements (not included). (*B*) Circadian period of SCN *mCry1-luc* bioluminescence rhythms from WT (n = 28), heterozygous (n = 10) and homozygous (n = 6) CK1 ε^{Tau} , and heterozygous (n = 3) and homozygous (n = 5) Fbxl3^{A/th} mice (group data; mean \pm SEM). (*C*) Circadian bioluminescence rhythms of SCN from *mCry1-luc* and *mPer1-luc* mice (n = 3 for each) previously treated with forskolin/isobutyl-1-methylxanthine (IBMX) and then released to free run by transfer to fresh medium. Note synchronous oscillations of slices within a genotype and phase delay of *mCry1* slices relative to *mPer1* slices. (*D*) Representative bioluminescence recordings from kidney explants of *mCry1-luc* and mPER2:: LUC mice. Note weaker definition in the former. (*E*) Representative bioluminescence recording from *mCry1-luc* MEFs. Culture was given a medium change (arrow) after the original rhythm had previously damped out after 8 d of recording.

Fig. 52. Temporal and spatial patterns of cellular bioluminescence rhythms in *mCry1-luc* SCN. (*A*) Cellular rhythms recorded by CCD from representative SCN plotted graphically and as a raster plot (*Upper*) reveal tight synchrony and phase dispersion. (*B*) Location within SCN of representative groups of cells color-coded by phase of bioluminescence rhythm. Legend indicates mean phase of oscillation of each group in relation to the phase-leading cells at the dorsomedial lip of the SCN (red). (*C*) Twenty-four-hour profile of cellular bioluminescence (normalized to peak of 100% to facilitate comparison) of representative cells from color-coded phase clusters identified in *B*. Note dorsomedial-to-ventrolateral phase gradient.

Fig. S3. Regulation of *mCry1* expression in SCN by extracellular cues. (A) Bioluminescence emission recorded by CCD of representative VPAC2-deficient *mCry1luc* SCN treated with forskolin (20μ M). (*Upper*) Raster plots of bioluminescence from cells before and after forskolin. (*B*) Bioluminescence emission from PER1/ PER2-deficient SCN carrying *mCry1-luc* (black, medium gray) or *mPer1-luc* reporters (dark gray, light gray) and treated with vehicle (n = 3 and n = 5) or forskolin (n = 6 and n = 5). Data plotted as mean without SEM for clarity. SEMs were $\leq 10\%$ of mean for all measures. (*C*) Bioluminescence emission from representative VIP-deficient *mCry1-luc* SCN that received a WT SCN graft at time indicated. Note damped rhythm before grafting and restoration of rhythm by WT SCN graft. (Before graft: amplitude, 26.25 ± 8.68 ; relative amplitude error (RAE), 0.140 ± 0.032 ; with graft amplitude, 75.45 ± 17.50 ; RAE, 0.044 ± 0.004 ; both P < 0.05 by paired *t* test; mean \pm SEM; n = 5.)

Fig. S4. Schematic model of interactions between extracellular signals and *Per* and *Cry1* expression. E-boxes are central to circadian expression of *Per* and *Cry.* In addition, resetting/synchronizing cues act upon CREs to regulate Per1 and Per2 expression, which in turn negatively regulate the *Cry* E-boxes, leading to complementary resetting of CRY expression. The shift to *Per* may be further stabilized by resynchronized CRY expression acting on *Per* E-boxes. This completes the coordinated phase shift/synchronization of the SCN molecular program and thereby directs shifts in behavioral and metabolic rhythms. Resetting cues can also act via PER1/PER2-independent pathways. These await identification but may involve metabolic signals and/or altered DEC-1 expression.

Table S1.	Bioluminescence	emissions from	explants from	mPER2::LUC and	mCry1-luc reporter mice
-----------	-----------------	----------------	---------------	----------------	-------------------------

Tissue	mPER2::Luc bioluminescence ($n = 6$)	<i>mCry1-luc</i> bioluminescence ($n = 12$)
Kidney	1,821 ± 416	1,914 ± 461 n.s.
Liver	1,031 ± 270	1,027 ± 255 n.s.
Lung	2,022 ± 559	1,295 ± 305 n.s.

Values presented as mean ± SEM. n.s., no significant difference vs. corresponding mPER2::LUC data by t test.

Table S2.	Summary	statistics	for	circadian	bioluminescence	rhythms	recorded	from	mPER2::LUC	and <i>i</i>	mCry1-luc
reporter m	ice										

mPER2::LUC				mCry1-luc			
Tissue	Period, h	Amplitude	RAE	Period, h	Amplitude	RAE	
Kidney	24.4 ± 0.4 (6)	373 ± 115 (6)	0.10 ± 0.01 (6)	23.5 ± 1.1 n.s. (9)	100 ± 2** (9)	0.17 ± 0.03* (9)	
Liver	24.0 ± 0.5 (6)	177 ± 61 (6)	0.13 ± 0.01 (6)	23.3 ± 1.6 n.s. (8)	72 ± 41 n.s.(8)	0.34 ± 0.06* (8)	
Lung	25.1 ± 0.7 (6)	425 ± 132 (6)	0.09 ± 0.01 (6)	24.2 \pm 0.8 n.s. (10)	65 ± 15** (10)	0.15 ± 0.01** (10)	

Values presented as mean \pm SEM. Values in parentheses are the numbers of explants. Note that three, four, and two explants of 12 total for each of kidney, liver, and lung from *mCry1-luc* mice failed to display a significant circadian rhythm by FFT analysis. All six mPER2::LUC explains were rhythmic. n.s., no significant difference vs. corresponding mPER2::LUC data by t test. *P < 0.05, **P < 0.01 vs. corresponding mPER2::LUC data by t test.

Table S3. Summary statistics for circadian bioluminescence rhythms recorded from MEFs derived from mPER2::LUC and *mCry1-luc* reporter mice

Genotype	No.	Period, h	Amplitude	RAE
<i>mCry1-luc</i>	6	23.6 ± 0.1	1,513 ± 244**	0.123 ± 0.005
mPER2::LUC	4	23.6 ± 0.3	445 ± 72	0.128 ± 0.006

Values presented as mean \pm SEM.

**P < 0.01 vs. corresponding mPER2::LUC data by t test.

Movie S1. Representative recording of bioluminescence emission from mCry1-luc organotypic SCN slice culture.

Movie S1

SANG SANG