Supporting Information

Park et al. 10.1073/pnas.1221925110

SI Materials and Methods

Immunoprecipitation and Immunoblotting. Cells were lysed with Nonidet P-40 lysis buffer [1% Nonidet P-40, 20 mM Tris·HCl, (pH 7.5), 150 mM NaCl, 5 mM EDTA, 50 mM NaF, 2 mM Na₃VO₄, and 10 μ g/mL each of aprotinin and leupeptin) or with 1× SDS sample buffer [50 mM Tris·HCl (pH 6.8), 100 mM DTT, 2% SDS, and 10% glycerol]. Cell lysates were adjusted to 0.1% Nonidet P-40 and incubated with anti-FLAG M2 agarose beads (Sigma-Aldrich) for 4 h at 4 °C. The immune complexes were recovered by low-speed centrifugation, and the beads were washed extensively

with the binding buffer with 0.1% Nonidet P-40 and then eluted with buffer containing 20 mM Tris·HCl (pH 8.0) and 2% SDS. Immunoprecipitated proteins were separated by SDS/PAGE and transferred to nitrocellulose membrane (Bio-Rad). Membranes were visualized by Western blot analysis with the enhanced chemiluminescence detection system (ECL; GE Healthcare). When necessary, membranes were stripped by incubation in stripping buffer (Thermo Fisher Scientific) for 15 min with constant agitation, washed, and then reprobed with various other antibodies.

Fig. S1. IFN- γ production of ubiquitin-specific protease 9X (USP9X) shRNA-expressing chimeric mice. IFN- γ production by control and USP9X shRNA-expressing CD4⁺ T cells was stimulated with anti-CD3 + anti-CD28 for 48 h and analyzed by intracellular cytokine staining (A) or ELISA (B). The data are compiled from three independent experiments. Error bars indicate mean \pm SD. *P < 0.05, two-tailed unpaired t test.

Fig. S2. Phenotypic analysis of USP9X shRNA-expressing chimeric mice. (A) Flow cytometry analysis of thymocytes in control or USP9X shRNA-expressing chimeric mice stained with anti-CD4 and anti-CD8 (n = 5 per group). (B and C) Flow cytometry analysis of splenocytes in control or USP9X shRNA-expressing chimeric mice stained with anti-CD4 and anti-CD8 (B) or with anti-CD3 and anti-B220 (C) (n = 5 per group). (D) Expression of CD62L and CD44 on CD4-gated splenic T cells from control or USP9X shRNA-expressing chimeric mice (n = 5 per group).

Fig. S3. T-cell activation in USP9X-deficient T cells. (A) IL-2 production by ovalbumin (OVA)-specific CD4⁺ T cells in vitro. Splenocytes from OVA-specific, MHC class II restricted TCR (OT-II) transgenic mice were stimulated with concanavalin A (1.5 μ g/mL) for 24 h and then transduced with control or shUSP9X-expressing retroviruses. At 2 d after transduction, splenocytes were stimulated with OVA₃₂₃₋₃₃₉ peptide for 8 h and analyzed by intracellular staining and flow cytometry (*Left*), or isolated OT-II CD4⁺ T cells were stimulated with OVA₃₂₃₋₃₃₉ peptide for 24 h and analyzed by ELISA (*Right*). The data are representative of and compiled from three independent experiments. Error bars indicate mean \pm SD. **P* < 0.05, two-tailed unpaired *t* test. (*B*) Expression of activation markers in control or USP9X shRNA-expressing CD4⁺ T cells. Purified CD4⁺ T cells were stimulated with anti-CD3 + anti-CD28 for 16 h and then analyzed for CD25 and CD69 expression by flow cytometry. The data are representative of three independent experiments.

Fig. S4. Immunoaffinity purification of Bcl10 and Malt1. (A) Immunoaffinity purification of the FLAG-Bcl10 complex was performed with anti-FLAG antibody in the presence or absence of anti-CD3 + anti-CD28 stimulation. The purified FLAG-Bcl10 samples were subjected to SDS/PAGE (gradient of 4–20% poly-acrylamide), visualized by silver staining, and immunoblotted with the indicated antibodies. Protein size markers (in kDa) are indicated on the left. The data are representative of two independent experiments. (*B*) Interaction between USP9X and Malt1. Jurkat cell line carrying SV40 large T antigen cells were transfected with Myc-Malt1 and USP9X and stimulated with anti-CD3 + anti-CD28 for the indicated times. Myc-Malt1 was immunoprecipitated with anti-Myc antibody. The immunoprecipitates were separated by SDS/PAGE and immunoblotted with indicated antibodies. The data are representative of two independent experiments.

Fig. S5. USP9X does not exert deubiquitinase activity on Malt1. TCR-induced ubiquitination of Malt1 in control and USP9X-shRNA expressing cells is shown. JE6.1 cells were left untreated or were stimulated with anti-CD3 + anti-CD28 for the indicated times. Cell lysates were generated by the addition of SDS lysis buffer (2% SDS) and immunoprecipitated with anti-Malt1 antibody. The whole-cell lysates (*Left*) and immunoprecipitates (*Right*) were subjected to SDS/PAGE and analyzed by immunoblotting with anti-ubiquitin antibody. The data are representative of two independent experiments.

Fig. S6. Nonproteasomal degradation of Bcl10 on TCR stimulation. (A) Jurkat (clone JE6.1) T cells were incubated with or without MG132 (25 μM) for 3 h. Then the cells were washed and stimulated with PMA + ionomycin (lono) for the indicated times. Cell lysates were subjected to immunoblotting with the indicated antibodies, with anti-Grb2 blot used as a loading control. The data are representative of two independent experiments. (*B* and C) JTAg cell lines stably expressing control or shUSP9X were transfected with CD28, Flag-El10, Myc-Malt1, and HA ubiquitin, and then incubated with or without MG132 for 3 h. Cells were washed and stimulated with PMA + lono. Cell lysates were immunoprecipitated with anti-Myc [first immunoprecipitation (IP)], and the immunoprecipitates were eluted by heating in the presence of SDS. The eluates were reimmunoprecipitated with anti-FLAG (second IP), and the immunoprecipitates were subjected to SDS/PAGE and analyzed by immunoblotting with anti-HA or anti-K48 polyubiquitin antibodies (*B*) or anti-K63 polyubiquitin antibody (C). *IgG. The data are representative of two independent experiments.