Supporting Information

Li et al. 10.1073/pnas.1307384110

DNAS

Fig. S1. Energy band of phase I at zero pressure using Perdew, Burke, and Ernzerhof exchange-correlation function and projected augmented wave pseudopotential as implemented in Vienna ab initio simulation package (1-4).

1. Kresse G, Furthmüller J (1996) Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci 6(1):15–50.

2. Blöchl PE (1994) Projector augmented-wave method. Phys Rev B Condens Matter 50(24):17953–17979.

3. Kresse G, Joubert J (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. *Phys Rev B* 59(3):1758–1775.

4. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77(18):3865–3868.

Fig. 52. Band structure of phase III at different pressure. Red line, 10 GPa; blue line, 70 GPa. Under compression, conduction band shifts to higher energy level, whereas covalence band shifts to lower level.

Fig. S3. The Eliashberg phonon spectral function $\alpha^2 F(\omega)$ (blank line) and integrated $\lambda(\omega)$ (red line) for phase II at 1 GPa calculated using density functional perturbation theory as implemented in Quantum Espresso (1).

1. Giannozzi P, et al. (2009) QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials. J Phys Condens Matter 21(39):395502.

Fig. S4. Phonon spectrum of phase IV at 953 GPa from small displacement method via Phonopy code (1).

1. Togo A, Obe F, Tanaka I (2008) Ab initio up to the melting point: Anharmonicity and vacancies in aluminum. Phys Rev B 79(13):134106.

Fig. S5. Equation of state of phase IV.

Fig. S6. Electronic density of states (DOS) of phase IV at different volumes (in cubic angstroms) (200 GPa to 1 TPa). As pressure increases, DOS value at Fermi level (*E*_t) decreases.

Table S1.	Structures	of the	stable	phases	of	CaC ₂
		•. ••		P	•••	

Pressure, GPa	Space group (no.)	Lattice parameters, <i>a</i> , <i>b</i> , <i>c</i> , α , β , γ ; \mathring{A} , ⁰			Atomic fractional coordinates			
0	C2/m	7.1712	3.8463	8.7162	Ca 4 <i>i</i>	0.0425	0.0000	0.2470
	(12)	90	124.99	90	C1 4 <i>i</i>	0.6063	0.0000	0.0594
					C2 4i	0.5142	0.0000	0.4352
4	Cmcm	3.6822	8.6324	4.7360	Ca 4c	0.0000	0.1465	0.2500
	(63)	90	90	90	C 8f	0.000	0.4376	0.1028
15.2	Immm	7.0623	2.6317	6.2697	Ca 4e	0.2951	0.0000	0.0000
	(71)	90	90	90	C1 4 <i>i</i>	0.0000	0.0000	0.2371
					C2 4j	0.5000	0.0000	0.3829
105.8	P6/mmm	2.5412	2.5412	3.6864	Ca 1 <i>a</i>	0.0000	0.0000	0.0000
	(191)	90	90	120	C 2d	0.3333	0.6667	0.5000

Only the fractional coordinates of symmetry inequivalent atoms are given.

Table	S2.	Atomic	Mulliken	population	analysis	for	phase	IV	at
105.8	GPa o	obtained	l using CA	STEP code ((1)				

Atom	S	Р	d	Total	Charge
с	1.11	3.29	_	4.39	-0.39
С	1.11	3.29	_	4.39	-0.39
Ca	1.80	5.92	1.49	9.22	0.78

1. Clark SJ, et al. (2005) First principles methods using CASTEP. Z Kristallogr 220(5-6):567-570.