Supporting Information

Drost et al. 10.1073/pnas.1220537110

SI Materials and Methods

Crystal Structure Modeling. Crystal structures were visualized using PyMOL software (Delano Scientific), using the Protein Database file from the published human MutS Homolog 2/6 crystal structure (Molecular Modeling Database ID #53938) (1).

Determination of Genomic Mutator Phenotypes at the Hypoxanthine Phosphorybosyl Transferase (*Hprt*) Gene. Spontaneous mutagenesis at the monoallelic genomic *Hprt* gene was determined essentially as described (2). Briefly, cell lines were cultured in hypoxanthine-aminopterin-thymidine (HAT)-supplemented medium for two subsequent passages to eliminate any preexisting *Hprt*-deficient cells, after which cell lines were propagated for three passages in the absence of HAT to allow the accumulation of spontaneous mutations at *Hprt*. Cells were then continuously cultured in medium containing 60 μ M 6-thioguanine (Sigma-Aldrich) to select for *Hprt*-deficient clones. Of note, mismatch repair (MMR)-deficient (but *Hprt*-proficient) cells do not survive these stringent selection conditions. After 10 d, *Hprt*-deficient colonies were fixed, stained, and counted. Counts were corrected for cloning efficiencies.

Microsatellite instability was analyzed by isolating \sim 50 subclones of each *Msh2*-mutant cell line. From these subclones, genomic DNA was isolated by Proteinase K lysis, and microsatellite sizes were determined after amplification by PCR and subsequent fragment analysis, as described previously (3). Data were analyzed using GeneMarker software (Softgenetics).

Methylation Tolerance Assays. *Msh2*-mutant cells were treated with *N*-Methyl-*N'*-Nitro-*N*-Nitrosoguanidine and, simultaneously, O^{6} -benzylguanine, an inhibitor of the repair enzyme methyl guanine methyl transferase, as described (4). After 3 d, adhering

- Warren JJ, et al. (2007) Structure of the human MutSalpha DNA lesion recognition complex. Mol Cell 26(4):579–592.
- Borgdorff V, Pauw B, van Hees-Stuivenberg S, de Wind N (2006) DNA mismatch repair mediates protection from mutagenesis induced by short-wave ultraviolet light. DNA Repair (Amst) 5(11):1364–1372.
- Bacher JW, Abdel Megid WM, Kent-First MG, Halberg RB (2005) Use of mononucleotide repeat markers for detection of microsatellite instability in mouse tumors. *Mol Carcinog* 44(4):285–292.

cells were counted, survival relative to the untreated cells was calculated, and the $\rm IC_{50}$ was determined.

In Vitro MMR Assays. MMR assays to test humanized variant MMR proteins were performed as described (5). To test MMR activity in cell extracts from the validation panel, 130 μ g cytoplasmic extract was assayed in the absence or presence of 100 ng recombinant wild-type human MSH2/MSH6. (kindly provided by T. Sixma, The Netherlands Cancer Institute, Amsterdam, the Netherlands). The results for these experiments were verified in a second set of experiments, using independent batches of cell extracts.

Western Blotting. Analysis of Msh2 and Msh6 protein expression by Western blotting was performed as described (4).

Electrophoretic Mobility Shift Assays. Oligonucleotide sequences were as described (6). One hundred seventy femtomole doublestranded matched or mismatched (G-T) oligonucleotide, labeled at the 5' end using γ -³²P ATP and polynucleotide kinase, was incubated with 20 μ g cytoplasmic extract in 1× DNA binding buffer [12% (vol/vol) glycerol, 20 mM Hepes/KOH at pH 7.9, 100 mM NaCl, 1 mM DTT, and 0.1 mM EDTA, with 0.05 µg/ µL Poly(deoxynosinic-deoxycytidylic) acid sodium salt and 425 fmol unlabeled, matched oligonucleotide] for 20 min at 37°C in a total volume of 20 µL. For adenine nucleotide challenge experiments, ATP was added 10 min after addition of the DNA probe. The reaction mixture was subjected to electrophoresis in a 4% polyacrylamide:bisacrylamide (29:1) gel in $0.5 \times$ TBE buffer containing 5% glycerol. The gels were dried, signals were visualized using a Cyclone Plus Phosphor Imager (PerkinElmer), and images were analyzed using OptiQuant software.

- de Wind N, et al. (1999) HNPCC-like cancer predisposition in mice through simultaneous loss of Msh3 and Msh6 mismatch-repair protein functions. Nat Genet 23(3):359–362.
- Drost M, et al. (2012) A rapid and cell-free assay to test the activity of lynch syndromeassociated MSH2 and MSH6 missense variants. *Hum Mutat* 33(3):488–494.
- Lützen A, de Wind N, Georgijevic D, Nielsen FC, Rasmussen LJ (2008) Functional analysis of HNPCC-related missense mutations in MSH2. *Mutat Res* 645(1-2):44–55.

Fig. S1. Western blot analysis of cytoplasmic and soluble nuclear extracts (CE and NE, respectively) of mutant cell lines. p53-binding protein 1 (53Bp1) is used as a nuclear marker. Ponceau S staining reveals equal loading of extracts.

Fig. S2. Inhibition of in vitro mismatch repair in HeLa cell extracts by in vitro expressed variants. MMR substrate was incubated with 12 μ L reticulocyte lysate containing expressed wild-type or variant MSH2/MSH6 in the presence of buffers and cofactors. After 10 min incubation at 37°C, 75 μ g HeLa extract was added and the reaction was incubated for an additional 25 min. Reactions were continued as described (5). Bars represent mean \pm SEM. **P* < 0.05 compared with WT. NS, Not significant. Partial, rather than complete, inhibition by the N671 variants was observed, as the substrate concentration exceeds the MSH2/MSH6 concentration.

Fig. S3. Mapping of the residues mutated in our screen to the crystal structure of the human MSH2/MSH6 heterodimer. All residues are colored according to their in vitro phenotype. Gray, MSH2; black, MSH6. Mutated residues are shown as spheres.

Fig. S4. Mutations induced by N-ethyl-N-nitrosourea at the Msh2 allele. This spectrum illustrates the broad mutational capacity of N-ethyl-N-nitrosourea.

talog	
diagnosis ca	
sh2 reverse	
Prototypic Ms	
Table S1.	

PNAS PNAS

				:	In vivo	Spontaneous		Repair	Complementation	Activity		ATP-induced	
	cDNA	(codon	MAPP	Microsatellite	protein	mutator	Methylation	in cell	with wt	.⊆.	Mismatch	Mismatch	Corresponding
Mutation*	position	change)	MMR⁺	Instability	level [‡]	phenotype	tolerance	extracts	MSH2/MSH6	CIMRA	binding	release	VUS in LOVD
M148K	c.443	ATG > AAG	3.75	ND [§]	QN	ND	DN	DN	ND	DN	ND	ND	
1346N	c.1037	ATC > AAC	18.3	DN	QN	ND	ND	DN	QN	QN	ND	DN	
I356K	c.1067	ATA > AAA	14.66	DN	QN	ND	DN	QN	DN	QN	ND	ND	
I356R	c.1067	ATA > AGA	16.34	ND	QN	ND	DN	DN	DN	QN	DN	ND	
L407P	c.1220	CTG > CCG	18.56	+	I	+	+	I	+	I	ND	ND	L407L
L503P	c.1508	CTC > CCC	14.91	+	+1	+	+	I	+	I	+1	+	L503P
K546E	c.1636	AAG > GAG	23.7	DN	QN	ND	ND	DN	QN	QN	ND	DN	
N553K	c.1659	AAC > AAA	24.75	DN	QN	ND	ND	QN	DN	QN	ND	DN	
S557P	c.1669	TCC > CCC	9.71	+	+I	+	+	I	+	I	+1	DN	T557P
M592K	c.1775	ATG > AAG	8.21	+	I	+	+	I	+	I	ND	ND	M592V
L595P	c.1784	CTC > CCC	7.68	DN	ND	ND	DN	DN	ND	QN	DN	ND	
L599P	c.1796	CTG > CCG	17.42	DN	ND	ND	ND	QN	DN	QN	ND	DN	
G669D	c.2006	GGT > GAT	35.86	+	I	+	+	I	+	I	ND	ND	G669D/R
N6711	c.2012	AAT > ATT	22.05	+	+	+	+	I	I	I	+	I	
N671K	c.2013	AAT > AAA	25.31	+	+	+	+	I	I	I	+	I	N671K/Y
S676L	c.2027	TCA > TTA	28.64	+	+	+	+	I	+	I	+	+	S676P
G683R	c.2047	ggg > agg	44	+	I	+	+	I	+	I	ND	ND	G683R/W
M688K	c.2063	ATG > AAG	32.5	+	I	+	+	I	+	I	ND	ND	M688R/I
V695E	c.2084	GTG > GAG	30.37	DN	DN	ND	DN	ND	ND	ND	ND	ND	
S699P	c.2095	TCG > CCG	5.97	ND	DN	ND	DN	ND	ND	DN	DN	ND	
A700E	c.2099	GCA > GAA	37.91	ND	DN	ND	DN	ND	DN	DN	ND	ND	
V702E	c.2105	GTG > GAG	33.26	+	I	+	+	I	+	I	DN	ND	V702G
E749G	c.2246	GAG > GGG	28.23	+	+	+	+	I	+	I	I	ND	
E749K	c.2245	GAG > AAG	19.98	+	+	+	+	I	+	I	+I	+	E749K
G761R	c.2281	ggg < agg	40.89	ND	DN	ND	DN	ND	ND	DN	DN	ND	
С822Ү	c.2465	TGT > TAT	6.48	DN	DN	DN	ND	DN	DN	QN	ND	DN	
Roldface re	nresents VII	S that are identi	ical in hot	h the LOVD and t	he reverse c	liadnosis catalod							

sis catalog. 2 E פטומו פרה ו באי

*Amino acid position.

¹In silico MAP-MMR prediction of pathogenicity. Scores above 4.55 are predicted to be pathogenic, variant M148K is borderline pathogenic. ⁺+, (near) wild type protein level; ±, reduced protein level; -, no protein. ⁴CIMRA, complete In vitro MMR assay (Fig. 4*B*). [§]ND, not determined (not in the validation panel). ^{II}Dominant-negative variant.