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S1 Additional model details

In our model, a person who presents with TB symptoms is tested upon arrival to a health center; if

the diagnostic test confirms TB, the patient is referred for TB treatment. Patients who adhere with

the referral receive treatment immediately. Non-adherent patients (i.e. initial treatment defaulters)

return to infectious states, from which they may visit the health provider again. If the diagnostic

test result is (falsely) negative, the individual moves to a non-referring infectious state. If the test

result is falsely positive, the individual who adheres with the referral receives treatment, incurs

costs but experiences no positive or negative health effects. Successfully treated cases are non-

infectious once they begin treatment. Individuals in infectious states may also exit these states by

tuberculosis-related death or self-recovery (i.e. recovery without treatment) and transition to the

compartment of slow latent progression. Births occur at a rate proportional to the population size

and all newborns enter into the susceptible compartment.

HIV co-infection alters the natural history of TB in several ways. HIV−infected individuals

have a higher probability of progressive TB upon initial infection [8, 16], a higher probability of

progression from latent infection to active TB [5], a lower probability of smear-positivity given

active disease [7, 9, 11], and higher mortality rates [7, 13, 19]. To capture the impact of HIV

infection, each compartment in Fig. 1 (in the main text) represents two sub-compartments: one

for HIV seronegative individuals and one for HIV seropositive individuals [14].
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In most regions with high TB prevalence, TB diagnosis relies primarily on sputum smear mi-

croscopy which has limited sensitivity, especially among HIV−infected patients [7, 9, 11]. Recently,

the Xpert MTB/RIF automated DNA test has been introduced which provides rapid and sensitive

detection of TB. A single Xpert MTB/RIF test has been shown to identify > 98% of patients

with smear-positive and TB and > 70% of patients with smear-negative TB [2, 3, 17]. In our

model, we do not consider traditional culture-based diagnosis since it is relatively costly and many

resource-limited regions lack the laboratory capacity to perform culture testing at high volume.

In this model, ICF acts to detect, diagnose, and treat symptomatic infectious individuals at

a higher rate than under PCF. We assume that when PCF is employed, non-referring infectious

individuals do not seek care voluntary, whereas when ICF is in effect, individuals in these states

may be diagnosed and treated.

To determine the projected impact of ICF on the TB epidemic, we assume that on average

15% of the population will have access to diagnosis through ICF in any given month that the

ICF intervention is employed. This implies that each population member may be exposed to the

ICF intervention (e.g., the mobile vans circulating in community) by the end of the ICF period

with probability 0.15. At this coverage level, the annual rate of departure from the symptomatic

infectious compartments increases by approximately 12 × 0.1625 = 1.9502 per year (since 1 −

e−0.1625 ' 0.15).

A previous study of ICF on TB in Harare, Zimbabwe [6] found that one course of ICF to screen

55,741 individuals was completed in 24 weeks using one mobile van. We estimate that approximately

210 mobile vans would be necessary to achieve 15% coverage level in providing access to diagnosis

through ICF in Zimbabwe with population of 13 million individuals (13, 000, 000×0.15× 24
55,741×4 ≈

210, assuming 4 weeks in each month). Assuming that the cost of renting one mobile van and

hiring two public health workers to perform screening is $150 per day, one course of ICF would

cost $31,500 per day in order to be completed by one month at 15% coverage level. Similarly, we

estimate one course of ICF at the service level 15% would cost $9,600 per day in Central African

Republic. We note that these resource needs and costs are crude and made simply to illustrate the

use of this model framework.
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Table S1. Model Calibration
Zimbabwe Central African Republic

Model Target Model Target Source
Measure Result Estimate Source Result Estimate Source

TB Prevalence 0.42% 0.39% [21] 0.43% 0.43% [21]
HIV Prevalence 14.60% 14.30% [18] 4.80% 4.70% [18]
TB Incidence (per 100,000 population) 597 633 [21] 319 327 [21]
Proportion of TB patients with HIV+ 0.643 0.75 [21] 0.293 0.33 [21]
Pr{smear+ | HIV+} 0.488 0.48 [10] 0.496 0.48 [10]
Pr{smear+ | HIV−} 0.623 0.65 [20] 0.637 0.65 [20]

S2 Model calibration

To model TB/HIV epidemics, we use the modeling framework proposed in [23] to find the prob-

ability distribution of events that may occur (e.g. birth, transmission of infection, or recovery)

and then use Monte Carlo simulation to generate epidemic trajectories. We calibrated the model

to TB/HIV epidemics in Zimbabwe and Central African Republic. Table 1 compares the results

provided by the epidemic models developed here with several target estimates.

S3 Decision model

Let at ∈ A denote the intervention in effect during the decision period [t, t + 1], t ∈ {1, 2, 3, . . .},

where A is the set of available interventions. In the TB/HIV models considered here, A =

{PCF, ICF}. Let the random variable ξt denote the set of events during the decision period [t, t+1]

that may trigger an observation, incur costs or lead to change in the population health status or

resource availability. Examples of such events include a new infection, hospitalization or death of

an infective. Clearly, the decisions in effect during period [t, t + 1] will influence the set of events

that may occur over this period. For example, in our TB models, ξt is a five dimensional vector

representing the number of visits to the health care system (incurring diagnosis costs and triggering

observations), the number of newly diagnosed TB cases (triggering observations), the number of

TB patients starting treatment (incurring treatment costs and change in health status), the number

of TB patients recovered from infection (change in health status) and the number of TB deaths

(change in health status). While the evolution of the random variable ξt over time is not fully

observable by the decision maker, we can use mathematical or simulation models to sample from
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the stochastic process X = {ξt, t > 1}.

The policy maker incurs a cost r(at, ξt) for the decision period [t, t + 1] if action at ∈ A is

in effect and the events ξt ∈ Ξ occur during the period [t, t + 1]. The cost function r(at, ξt) can

be characterized in a variety of ways depending on the policy maker’s priorities. For example, if

the policy maker wants to minimize the total number of TB cases over the course of epidemic,

then cost function r(at, ξt) can be simply defined as the number of new TB cases during the

period [t, t + 1]. However, efforts to control epidemics may be bounded by the availability of

resources, such as antibiotics and budget. In these situations, where both health-related outcomes

and the resource consumption level are essential for determining the optimality of a health policy,

a more comprehensive cost function is needed. A common approach for defining optimality in

these situations is to assume that the policy maker’s objective is to maximize the population’s net

monetary benefit (NMB) [4]. To characterize the cost r(at, ξt) accordingly, we define the following

notation:

• λ: policy maker’s willingness-to-pay (WTP) for one unit of health.

• c(at): direct cost of implementing the intervention at ∈ A during the period [t, t+ 1].

• q(ξt): loss in health during period [t, t+ 1] if random events ξt occur.

• v(ξt): cost incurred during period [t, t+ 1] if random events ξt occur.

Now, the cost r(at, ξt), defined as the loss in the population’s NMB if action at ∈ A is in effect

and the random events ξt occur during the decision period [t, t + 1], is calculated by r(at, ξt) =

λq(ξt) + v(ξt) + c(at). We note that the cost function r(·) may also be a function of unobservable

events. For example, infectious individuals who are not diagnosed will experience a range of health

losses.

During a decision period, the policy maker may obtain observations on different measures.

Let mt ∈ M be the observations made during the period [t, t + 1] where M denotes the set of

all possible observations during decision periods. For example, in this paper, we assumed that

observations can be made on the number of TB cases reported during each decision period and

hence M = {0, 1, 2, . . .}. Let ht denote the history of the epidemic at time index t defined as

the sequence of past actions and observations up to the time index t. The history ht is updated
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recursively according to ht = {ht−1, at−1,mt−1}, where h1 describes the epidemic history prior the

time index t = 1. Let H denote the set of all possible values that the history ht can take. Our

objective is to find a policy π : H → A that specifies which action to take based on the epidemic

history up to a time point t ∈ {1, 2, 3, . . .} to minimize the expected total discounted loss in net

monitory benefit:

EX [
T∑
t=1

γtr(π(ht), ξt)|h1 = ĥ1], (S1)

where γ ∈ (0, 1] is the discount rate and ĥ1 is the observed history at time index t = 1. The

expectation in Eq. (S1) is with respect to the stochastic process X = {ξt, t > 1} which represents

the events occurring over the evolution of the epidemic given the actions at = π(ht), t ∈ {0, 1, 2, . . .}.

The decision horizon T can be a constant predetermined by the decision maker (e.g., 10 years) or

can be a random variable governed by the stochastic process X = {ξt, t > 1} (e.g., time when the

disease is eradicated).

To find a policy π that minimizes the objective function (S1), we proposed a method using

approximate dynamic programming techniques [1, 15]. Readers with limited familiarity with the

application of dynamic programming in optimal control of epidemics are referred to [22] for a simple

illustrative example.

The proposed method works as follows. For a pair (ht, a), the Q-value Q∗(ht, a) is defined as

the optimal expected total discounted loss in NMB if having observed the epidemic history ht, the

policy maker chooses the action a at time index t. Now, if Q-values Q∗(·) are available, the optimal

decision when the history ht is observed can be found by:

a∗t = arg min
a∈A

Q∗(ht, a). (S2)

Using Eq. (S2) to make decisions poses two main difficulties. First, finding the optimal Q-values

for each history-action pair (ht, a) ∈ H × A would be computationally infeasible since the set Ht

can easily be of infinite size. Second, requiring the entire epidemic history to make decision would

encumber the successful implementation of the health policies generated by Eq. (S2) in practice.

To overcome these issues, our method uses a feature-extraction function f(·) = (f1, f2, . . . fK)

to summarize a given epidemic history ht into K statistics (or features), such as the number of TB
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case-notifications or the case finding strategy in effect during the last decision period. The core

goal of feature selection is to identify statistics defined within the historical observations of disease

spread that can be used to accurately differentiate the current trajectory from the infinite set of

possible trajectories. For each action a ∈ A, the method approximates the Q-values Q∗(ht, a) with

a regression model Q̃(f(ht), a; θa), where f(ht) returns the value of features (f1, f2, . . . fK) given the

history ht, and θa is the vector of regression parameters which should be tuned properly through a

training process. For the TB/HIV models considered here, we chose “the case finding intervention

in effect during the past decision period” and “TB case notifications during past decision period”

as features.

Given approximation functions Q̃(·) and feature extraction function f(·), the greedy policy with

respect to the approximation functions Q̃(·) is then given by:

π̃(h) = arg min
a∈A

Q̃(f(h), a; θa), for h ∈ H. (S3)

To find the approximation functions Q̃(·), we propose an approximate policy iteration algorithm

which is motivated by Lagoudakis and Parr’s approach [12] and is modified for systems where states

are only partially observable (see Figure 1). The algorithm is an iterative procedure which searches

for the optimal policy by generating a sequence of monotonically improving policies. Each iteration

of the algorithm consists of two main steps: policy evaluation which samples (via simulation) the

Q-values and updates (via back-propagation) the approximate Q-functions for the current policy,

and policy improvement which updates the recommendation for each history h ∈ H according to

the greedy formula (7) using the new approximate Q-functions.

To explain the steps of the algorithm, let Q̃n(·) be the approximate Q-functions at the beginning

of iteration n > 1. The policy improvement step (see Figure 1) involves characterizing a new policy

π̃n using the greedy formula (S3) with respect to approximate functions Q̃n(·). We note that the

updated policy π̃n is not physically stored but it is computed only on demand in policy evaluation

step.

In the policy evaluation step, we use the epidemic model to obtain a sample on the stochastic

process X = {ξt, t > 1} and build a sample path which consists of a sequence of history observed at

each decision epoch, {ĥ1, ĥ2, ĥ3, . . . , ĥT }, and a sequence of rewards observed during each decision
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Fig. S1. Approximate Policy Iteration Algorithm

interval, {r̂1, r̂2, r̂3, . . . , r̂T−1}. Now, for this sample path, the reward-to-go for the observed history-

action pair (ĥt, ât) is calculated as: q̂t =
∑T−1

τ=t γ
τ−tr̂τ . In calculating q̂t, we note that if the disease

is eradicated at time index T , there is no reward after this time and hence, the sampled reward-

to-go at time index T is q̂T = 0. Otherwise, we use q̂T = min
a
Q̃n(f(ĥT ), a; θ̃a) as a sample for

reward-to-go at time index T − 1.

The policy projection step in Figure 1 involves a back-propagation algorithm to update the

tunable parameters of the approximate Q-functions Q̃n(·) using the observed history-action pair

(ĥt, ât), t ∈ {1, 2, 3, . . . , T} and the corresponding reward-to-go samples q̂t, t ∈ {1, 2, 3, . . . , T}. For

a given decision a ∈ A, the estimate of the parameter θna can be updated as:

θ̃n+1
a ← arg min

θ

T∑
t=1

[
1{ât=a}

(
q̂t − Q̃

n
(f(ĥt), a; θ

)2]
, (S4)

where 1{A} = 1 if A is true and 1{A} = 0, otherwise.

Given the new estimates θ̃n+1
a , we increment n← n+1 and repeat the policy improvement step

using the updated approximate Q-functions Q̃
n+1

(·).

For TB/HIV co-epidemics considered here, we use the modeling framework proposed in [23] to

characterize the underlying stochastic process X = {ξt, t > 1} which represents events that may

occur during an epidemic (e.g. birth, transmission of infections to a susceptible, or recovery). We

then use Monte Carlo simulation to sample from the stochastic process X in order to generate
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epidemic trajectories. The framework proposed in [23] is a stochastic compartmental model that

can be used to represent the within-host natural history of disease, between-host transmission

dynamics, and the health care delivery system. As discussed before, other modeling frameworks

can also be utilized for this purpose.

For a history-action pair (ht, a) ∈ H×A, we approximate the Q-valueQ∗(ht, a) with Q̃(f(ht), a; θa),

where Q̃(·; θa) is a polynomial function and f(·) is the selected feature-extraction function. We chose

a quadratic function to approximate Q-values. Our experiments show that this regression model

yield stable and well-behaved policies.
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S4 Approximately optimal dynamic case finding policies

(a) Affordability curve (b) Decision rule

Fig. S2. Approximately optimal dynamic case finding policies for scenario (1) which resembles the TB/HIV
epidemic in Zimbabwe; available TB diagnosis test: sputum microscopy.

(a) Affordability curve (b) Decision rule

Fig. S3. Approximately optimal dynamic case finding policies for scenario (2) which resembles the TB/HIV
epidemic in Zimbabwe; available TB diagnosis test: sputum microscopy and Xpert MTB/RIF each
with 50% coverage.

9



(a) Affordability curve (b) Decision rule

Fig. S4. Approximately optimal dynamic case finding policies for scenario (3) which resembles the TB/HIV
epidemic in Central African Republic; available TB diagnosis test: sputum microscopy.

(a) Affordability curve (b) Decision rule

Fig. S5. Approximately optimal dynamic case finding policies for scenario (4) which resembles the TB/HIV
epidemic in Central African Republic; available TB diagnosis test: sputum microscopy and Xpert
MTB/RIF each with 50% coverage.
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S5 Sensitivity Analysis

This section includes the result of sensitivity analysis on

1. The coverage level (i.e., the average proportion of the population that will have access to

diagnosis through ICF in any given month that the ICF intervention is employed) (Figs.

S6-S7),

2. The penalty cost (or fixed cost) that may be incurred when we switch from PCF to ICF (Fig.

S8), and

3. The delay in reporting of diagnosed TB cases (Figs. S9-S10).

Figs. S6-S7 reveal that comparative benefit of dynamic policies are maintained for different

coverage levels of the ICF intervention. Likewise, Fig S8 shows that when switching from PCF

to ICF results in a penalty cost, the optimization algorithm generates dynamic policies which

outperform static policies that assume the same penalty cost for these switches.

If the number of diagnosed TB cases are reported with a n-month delay, we use the following

features to generate dynamic policies: (1) the number of TB case-notifications during the decision

period n-months previous and (2) the case finding strategy that was used during this period. Figs.

S9-S10 reveal that these delays do not significantly diminish the performance of dynamic case

finding policies. The insensitivity of lagged reporting is at least partially attributable to the fact

that TB/HIV co-epidemics are relatively stable over this 6-12 month time period. Therefore, the

optimization algorithm described above is still able to use these two features to identify dynamic

policies which perform reasonably well.

As also described in the main manuscript, the following scenarios were considered.

Scenario (1): resembles the TB/HIV epidemic in Zimbabwe; available TB diagnosis test:

sputum microscopy.

Scenario (2): resembles the TB/HIV epidemic in Zimbabwe; available TB diagnosis test:

sputum microscopy and Xpert MTB/RIF each with 50% coverage.

Scenario (3): resembles the TB/HIV epidemic in Central African Republic; available TB

diagnosis test: sputum microscopy.
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Scenario (4): resembles the TB/HIV epidemic in Central African Republic; available TB

diagnosis test: sputum microscopy and Xpert MTB/RIF each with 50% coverage.

12



O: PCF

A: Dynamic – WTP $0

B: Dynamic – WTP $100

C: Dynamic – WTP $200

D: Dynamic – WTP $300
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E

Fig. S6. Cost-effectiveness planes comparing the performance of static versus dynamic ICF policies
when on average 10% of the population will have access to diagnosis through ICF in any
given month that the ICF intervention is employed. Fig. S6(a)-(d) show the cost-effectiveness
planes for scenarios (1)-(4), respectively. The cost-effectiveness frontiers corresponding to dynamic
case finding policies strictly dominate the cost-effectiveness frontiers corresponding to static policies
for all scenarios.
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Fig. S7. Cost-effectiveness planes comparing the performance of static versus dynamic ICF policies,
when on average 20% of the population will have access to diagnosis through ICF in any
given month that the ICF intervention is employed. Fig. S7(a)-(d) show the cost-effectiveness
planes for scenarios (1)-(4), respectively. The cost-effectiveness frontiers corresponding to dynamic
case finding policies strictly dominate the cost-effectiveness frontiers corresponding to static policies
for all scenarios.
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Fig. S8. Cost-effectiveness planes comparing the performance of static versus dynamic ICF policies
when on average 15% of the population will have access to diagnosis through ICF in any given
month that the ICF intervention is employed and switching from PCF to ICF incurs a penalty
cost which is equal to the direct cost of ICF for one month. Fig. S8(a)-(d) show the cost-
effectiveness planes for scenarios (1)-(4), respectively. The cost-effectiveness frontiers corresponding
to dynamic case finding policies strictly dominate the cost-effectiveness frontiers corresponding to
static policies for all scenarios.
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Fig. S9. Cost-effectiveness planes comparing the performance of static versus dynamic ICF poli-
cies when on average 15% of the population will have access to diagnosis through ICF in
any given month that the ICF intervention is employed, and the number of TB cases di-
agnosed during each month become available to the public health decision maker after a
6 month delay. Fig. S9(a)-(d) show the cost-effectiveness planes for scenarios (1)-(4), respectively.
The cost-effectiveness frontiers corresponding to dynamic case finding policies strictly dominate the
cost-effectiveness frontiers corresponding to static policies for all scenarios.
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B: Dynamic – WTP $100

C: Dynamic – WTP $200

D: Dynamic – WTP $300

a: ICF Every 52 Weeks

b: ICF Every 24 Weeks

c: ICF Every 12 Weeks

d: ICF Every 8 Weeks

Fig. S10. Cost-effectiveness planes comparing the performance of static versus dynamic ICF poli-
cies when on average 15% of the population will have access to diagnosis through ICF
in any given month that the ICF intervention is employed, and the number of TB cases
diagnosed during each month become available to the public health decision maker after
a 12 month delay. Fig. S10(a)-(d) show the cost-effectiveness planes for scenarios (1)-(4), re-
spectively. The cost-effectiveness frontiers corresponding to dynamic case finding policies strictly
dominate the cost-effectiveness frontiers corresponding to static policies for all scenarios.
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S6 Population’s health outcomes for different values of WTP for

health

(a) Scenario (1) which resembles the TB/HIV epidemic
in Zimbabwe; available TB diagnosis test: sputum mi-
croscopy.

(b) Scenario (2) which resembles the TB/HIV epidemic
in Zimbabwe; available TB diagnosis test: sputum mi-
croscopy and Xpert MTB/RIF each with 50% coverage.

(c) Scenario (3) which resembles the TB/HIV epidemic
in Zimbabwe; available TB diagnosis test: sputum mi-
croscopy and Xpert MTB/RIF each with 50% coverage.

(d) Scenario (4) which resembles the TB/HIV epidemic
in Central African Republic; available TB diagnosis test:
sputum microscopy and Xpert MTB/RIF each with 50%
coverage.

Fig. S 11. Health outcomes for different values of WTP for health over a 10-year horizon. HIV
associated TB deaths are counted as TB deaths in these figures.
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S7 Switching between PCF and ICF

Fig. S12 compares the number of times that the decision maker should switch between PCF and

ICF by following static policies that only specify the frequency of ICF and the dynamic policies

shown in §S4. This figure reveals that for the scenarios considered here, for any level of additional

health that the decision maker intends to achieve, dynamic policies will require fewer number of

switches between PCF and ICF interventions than static policies.

O: PCF

a: ICF Every 52 Weeks

b: ICF Every 24 Weeks

c: ICF Every 12 Weeks

d: ICF Every 8 Weeks

A: Dynamic – WTP $0

B: Dynamic – WTP $50

C: Dynamic – WTP $100

D: Dynamic – WTP $150

E: Dynamic – WTP $200
A B

C
D

E

O

a

b

c

d

(a) Scenario (1) which resembles the TB/HIV epidemic
in Zimbabwe; available TB diagnosis test: sputum mi-
croscopy.

O: PCF

a: ICF Every 52 Weeks

b: ICF Every 24 Weeks

c: ICF Every 12 Weeks

d: ICF Every 8 Weeks

A: Dynamic – WTP $0

B: Dynamic – WTP $50

C: Dynamic – WTP $100

D: Dynamic – WTP $150

E: Dynamic – WTP $200
A B

C
D

E

O

a

b

c

d

(b) Scenario (2) which resembles the TB/HIV epidemic
in Zimbabwe; available TB diagnosis test: sputum mi-
croscopy and Xpert MTB/RIF each with 50% coverage.

O: PCF

a: ICF Every 52 Weeks

b: ICF Every 24 Weeks

c: ICF Every 12 Weeks

d: ICF Every 8 Weeks

A: Dynamic – WTP $0

B: Dynamic – WTP $100

C: Dynamic – WTP $200A B

C

O

a

b

c

d

(c) Scenario (3) which resembles the TB/HIV epidemic
in Zimbabwe; available TB diagnosis test: sputum mi-
croscopy and Xpert MTB/RIF each with 50% coverage.

O: PCF

a: ICF Every 52 Weeks

b: ICF Every 24 Weeks

c: ICF Every 12 Weeks

d: ICF Every 8 Weeks

A: Dynamic – WTP $0

B: Dynamic – WTP $100

C: Dynamic – WTP $200

D: Dynamic – WTP $300

E: Dynamic – WTP $400
A

B
C D

E
O

a

b

c

d

(d) Scenario (4) which resembles the TB/HIV epidemic
in Central African Republic; available TB diagnosis test:
sputum microscopy and Xpert MTB/RIF each with 50%
coverage.

Fig. S12. The number of times that switching between PCF and ICF occurs for static and dynamic policies.
Bars around the points corresponding to dynamic policies (denoted with capital letters) represent
95% confidence intervals.
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(a) WTP = $0 per one additional TB cases averted.

(b) WTP = $100 per one additional TB cases averted.

Fig. S13. Use of case finding interventions for one trajectory of the TB/HIV epidemic in scenario (1) which resembles the TB/HIV epidemic in Zimbabwe;
available TB diagnosis test: sputum microscopy.
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S8 Model parameters

Table S2. Parameters of the TB/HIV model - Birth and mortality parameters

Central
African

Parameters Zimbabwe Republic

Annual birth rate 0.033 0.042
Annual natural death rate 0.017 0.0215
Annual death rate for HIV+ individuals 0.024 0.0285
Additional annual mortality rate due to TB in class

“Smear-Negative Symptomatic Infectious/Non-Referring”
among HIV− individuals

0.317 0.232

Additional annual mortality rate due to TB in class
“Smear-Negative Symptomatic Infectious/Non-Referring”
among HIV+ individuals

0.517 0.332

Additional annual mortality rate due to TB in class
“Smear-Negative Symptomatic Infectious/Self-Referring”
among HIV− individuals

0.317 0.232

Additional annual mortality rate due to TB in class
“Smear-Negative Symptomatic Infectious/Self-Referring”
among HIV+ individuals

0.517 0.332

Additional annual mortality rate due to TB in class
“Smear-Positive Symptomatic Infectious/Non-Referring”
among HIV− individuals

0.437 0.322

Additional annual mortality rate due to TB in class
“Smear-Positive Symptomatic Infectious/Non-Referring”
among HIV+ individuals

0.637 0.422

Additional annual mortality rate due to TB in class
“Smear-Positive Symptomatic Infectious/Self-Referring”
among HIV− individuals

0.437 0.322

Additional annual mortality rate due to TB in class
“Smear-Positive Symptomatic Infectious/Self-Referring”
among HIV+ individuals

0.637 0.422
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Table S3. Parameters of the TB/HIV model - Infectivity parameters

Central
African

Parameters Zimbabwe Republic

Annual HIV infectivity rate[ 0.120 0.125

Annual infectivity rate[ of class “Asymptomatic Infectious”
among HIV− and HIV+

2.063 2.475

Annual infectivity rate[ of class “Smear-Negative
Symptomatic Infectious/Non-Referring” among HIV− and
HIV+

2.75 3.3

Annual infectivity rate[ of class “Smear-Negative
Symptomatic Infectious/

2.75 3.30

Self-Referring” among HIV− and HIV+

Annual infectivity rate[ of class “Smear-Positive
Symptomatic Infectious/

12.5 15.0

Non-Referring” among HIV− and HIV+

Annual infectivity rate[ of class “Smear-Positive
Symptomatic Infectious/Self-Referring” among HIV− and
HIV+

12.5 15.0

[Infectivity rate is the expected number of secondary infections per unit of time caused by an
infectious individual.

Table S4. Parameters of the TB/HIV model - Latent period parameters

Central
African

Parameters Zimbabwe Republic

Probability of moving to “Fast Latent” class upon infection
(HIV−)

0.115 0.115

Probability of moving to “Fast Latent” class upon infection
(HIV+)

0.9 0.7

Annual rate of leaving class “Fast Latent” (HIV−) 1.5 1.5
Annual rate of leaving class “Fast Latent” (HIV+) 12.0 12.0
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Table S5. Parameters of the TB/HIV model - Infectious classes’ parameters

Central
African

Parameters Zimbabwe Republic

Annual rate of leaving class “Asymptomatic Infectious”
(HIV−)

2.0 2.0

Annual rate of leaving class “Asymptomatic Infectious”
(HIV−)

10.0 10.0

Annual transition rate from “Smear-Negative Symptomatic
Infectious/Non-Referring” to “Smear-Negative
Symptomatic Infectious/Self-Referring” among HIV−
individuals

2.5 2.5

Annual transition rate from “Smear-Negative Symptomatic
Infectious/Non-Referring” to “Smear-Negative
Symptomatic Infectious/Self-Referring” among HIV+
individuals

4.0 4.0

Annual transition rate from “Smear-Negative Symptomatic
Infectious/Non-Referring” to “Smear-Positive
Symptomatic Infectious/Non-Referring” among HIV−
individuals

3.5 3.5

Annual transition rate from “Smear-Negative Symptomatic
Infectious/Non-Referring” to “Smear-Positive
Symptomatic Infectious/Non-Referring” among HIV+
individuals

5.0 5.0

Annual transition rate from “Smear-Negative Symptomatic
Infectious/Self-Referring” to “Smear-Positive
Symptomatic Infectious/Self-Referring” among HIV−
individuals

3.5 3.5

Annual transition rate from “Smear-Negative Symptomatic
Infectious/Self-Referring” to “Smear-Positive
Symptomatic Infectious/Self-Referring” among HIV+
individuals

5.0 5.0

Annual transition rate from “Smear-Positive Symptomatic
Infectious/Non-Referring” to “Smear-Positive
Symptomatic Infectious/Self-Referring” among HIV−
individuals

2.0 2.0

Annual transition rate from “Smear-Positive Symptomatic
Infectious/Non-Referring” to “Smear-Positive
Symptomatic Infectious/Self-Referring” among HIV+
individuals

7.0 7.0
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Table S6. Parameters of the TB/HIV model - Cure parameters

Central
African

Parameters Zimbabwe Republic

Annual natural cure rate in “Smear-Negative Symptomatic
Infectious/Non-Referring” among HIV− individuals

0.3 0.3

Annual natural cure rate in “Smear-Negative Symptomatic
Infectious/Self-Referring” among HIV+ individuals

0.1 0.1

Annual natural cure rate in “Smear-Negative Symptomatic
Infectious/Self-Referring” among HIV− individuals

0.3 0.3

Annual natural cure rate in “Smear-Negative Symptomatic
Infectious/Self-Referring” among HIV+ individuals

0.1 0.1

Annual natural cure rate in “Smear-Positive Symptomatic
Infectious/Non-Referring” among HIV− individuals

0.19 0.19

Annual natural cure rate in “Smear-Positive Symptomatic
Infectious/Non-Referring” among HIV+ individuals

0.0 0.0

Annual natural cure rate in “Smear-Positive Symptomatic
Infectious/Self-Referring” among HIV− individuals

0.19 0.19

Annual natural cure rate in “Smear-Positive Symptomatic
Infectious/Self-Referring” among HIV+ individuals

0.0 0.0

Annual cure rate in “Treatment” among HIV− patients 2.0 2.0
Annual cure rate in “Treatment” among HIV− patients 2.0 2.0
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Table S7. Parameters of the TB/HIV model - Referring to health providers

Central
African

Parameters Zimbabwe Republic

Annual rate of visit to health provider from “Smear-Negative
Symptomatic Infectious/Self-Referring among HIV−
individuals under PCF

3.0 3.0

Annual rate of visit to health provider from “Smear-Negative
Symptomatic Infectious/Self-Referring” among HIV+
individuals under PCF

15.0 15.0

Annual rate of visit to health provider from “Smear-Positive
Symptomatic Infectious/Self-Referring” among HIV−
individuals under PCF

4.0 4.0

Annual rate of visit to health provider from “Smear-Positive
Symptomatic Infectious/Self-Referring” among HIV+
individuals under PCF

12.0 12.0

Annual rate of visit to health provider from “Smear-Negative
Symptomatic Infectious/Non-Referring” among HIV−
individuals under ICF

3.45 3.45

Annual rate of visit to health provider from “Smear-Negative
Symptomatic Infectious/Non-Referring” among HIV+
individuals under ICF

3.45 3.45

Annual rate of visit to health provider from “Smear-Negative
Symptomatic Infectious/Self-Referring” among HIV−
individuals under ICF

6.45 6.45

Annual rate of visit to health provider from “Smear-Negative
Symptomatic Infectious/Self-Referring” among HIV+
individuals under ICF

18.45 18.45

Annual rate of visit to health provider from “Smear-Positive
Symptomatic Infectious/Non-Referring” among HIV−
individuals under ICF

3.45 3.45

Annual rate of visit to health provider from “Smear-Positive
Symptomatic Infectious/Non-Referring” among HIV+
individuals under ICF

3.45 3.45

Annual rate of visit to health provider from “Smear-Positive
Symptomatic Infectious/Self-Referring” among HIV−
individuals under ICF

7.45 7.45

Annual rate of visit to health provider from “Smear-Positive
Symptomatic Infectious/Self-Referring” among HIV+
individuals under ICF

15.45 15.45
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Table S8. Parameters of the TB/HIV model - Diagnostic test parameters

Central
African

Parameters Zimbabwe Republic

Sensitivity of Xpert MTB/RIF for smear-negative TB
patients with HIV− status

0.725 0.725

Sensitivity of Xpert MTB/RIF for smear-negative TB
patients with HIV+ status

0.725 0.725

Sensitivity of Xpert MTB/RIF for smear-positive TB
patients with HIV− status

0.982 0.982

Sensitivity of Xpert MTB/RIF for smear-positive TB
patients with HIV+ status

0.982 0.982

Sensitivity of smear microscopy for smear-negative TB
patients with HIV− status

0.0 0.0

Sensitivity of smear microscopy for smear-negative TB
patients with HIV+ status

0.0 0.0

Sensitivity of smear microscopy for smear-positive TB
patients with HIV− status

1.0 1.0

Sensitivity of smear microscopy for smear-positive TB
patients with HIV+ status

1.0 1.0

Table S9. Parameters of the TB/HIV model - Healthcare system parameters

Central
African

Parameters Zimbabwe Republic

Probability of compliance to receive TB treatment 0.95 0.95
Daily cost of TB treatment $1.00 $1.00
Monthly cost of active case finding $31,500 $9,600
Cost of Xpert MTB/RIF test $30.00 $30.00
Cost of smear microscopy test $5.00 $5.00
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