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1 Material and Methods

primary antibody – yC20 total Hog1 polyclonal goat antibody (Santa Cruz Biotechnology Inc.), 1:2 000 in
Odyssey Blocking Buffer with TBST (1:1000), 1 h at room temperature, third primary antibody – rabbit
polyclonal antisera Gpd1-A (Innovagen), 1:2 000 in Odyssey Blocking Buffer with TBST (1:1 000), 1 h at
room temperature, and simultaneously with secondary antibodies: donkey anti-goat IR Dye 680, 1:12 500 and
donkey anti-rabbit IR Dye 800CW 1:12 500 (Li-Cor Biosciences), in Odyssey Blocking Buffer with TBST
(1:1000), for 45 min at room temperature. The membranes were scanned using Odyssey Infrared Imag-
ing System (Li-Cor Biosciences) and quantified using Multi Gauge 3.0 (FujiFilm) software. Refractometer
Millipore, CA, USA) and acetate, succinate and pyruvate by ultraviolet-1 visible light absorbance detector
(Waters 486 Tunable Absorbance Detector set at 210 nm, Millipore, CA, USA).

Glycerol Assays

Yeast cells were cultured in YPD medium (Yeast Peptone D-glucose; 1% yeast extract (Bacto), 2% peptone
(Bacto), 2% glucose). The cells were grown to exponential phase (OD600=0.7), harvested by centrifugation
(13 000 rpm), frozen in liquid nitrogen and stored in -20◦C. The frozen pellets were boiled for 10 min with
1 ml of ice-cold water (12 samples at a time) and spun down (1 min at 13 000 rpm). The supernatant was
transferred to new tubes and stored in -20◦C before further processing. The glycerol content of the samples
was analyzed using an enzymatic kit (Roche, Cat. No. 10 148 270 035). 200µl of sample per well were loaded
onto a 96 well plate, along with a dilution series of a glycerol content standard (solution 4). Samples were
mixed with reagents using a Biomek 2000 robot (Beckman), transferred to another plate containing reagent
2 (2g of coenzyme/buffer mixture [glycylglycine buffer, pH approx. 7.4; NADH, approx. 7 mg; ATP, approx.
22 mg; PEP-CHA, approx. 11 mg; magnesium sulfate] diluted in 11ml redist. water) from the glycerol
kit and measured using a plate reader; then the reaction was stopped with reagent 3 (0.4 ml consisting of:
pyruvate kinase, approx. 240 U; L-lactate dehydrogenase, approx. 220 U) and the samples were measured
again. The glycerol concentrations were determined using the dilution series from the enzymatic kit as a
calibration curve. Absorbance was measured at 340 nm.

Trehalose Assays

Trehalose assays were conducted as described in Parrou and Francois, Analytical Biochemistry 1997: cells
(4-10 mg dry wt) were collected by centrifugation (3 min at 5000g; 0-4◦C), carefully drained to remove the
culture medium re-suspended in 0.25 ml of 0.25M Na2CO3 using screw-top Eppendorf tubes and incubated
at 95◦C for 4h. The mixture was brought to pH 5.2 by addition of 0.15 ml of 1M acetic acid and 0.6 ml of
0.2 M Na-acetate, pH 5.2. Half of the suspension was incubated overnight with trehalase (0.05 U/ml) (Sigma
Cat. No. T-8778) at 37◦C under constant agitation. The suspensions were centrifuged for 3 min at 5000g.
The glucose content was determined using 20 µl (adequately diluted in water) of supernatant by addition of
200 µl of glucose oxidase mixture (Sigma, Cat. No. 510-A) and read at 420 nm in a ELISA reader apparatus.
Units: µg glucose equivalents/107 cells

Northern Blots

Yeast cells were cultured in YPD medium (Yeast Peptone D-glucose; 1% yeast extract (Bacto), 2% peptone
(Bacto), 2% glucose). Cultures of 500 ml were grown to mid-exponential phase (OD600=0.7). Samples of
10ml were taken at different time points, cooled rapidly by mixing with 40ml of ice-cold MiliQ water and
centrifuged for 5 min at 3000 rpm. Pellets were re-suspended in 1ml ice-cold water (MiliQ), transferred into
2ml tubes with screw caps and re-sedimented (13 200 rpm for 20 s). At this stage pellets could be frozen and
stored at -20◦C. The cell content was extracted from the frozen pellets by bead beating: 500 µ 0.45 mm glass
beads, 500 µl extraction buffer, 500 µl PCI (citrate-buffered water-equilibrated phenol pH 4.2, chloroform,
isoamyl alcohol, 25:24:1) and 50 µl 10% SDS was added to the pellets. The samples were mixed for 20 s
at 6 m/s using a fast prep desiccator Bio101. The extracted samples were centrifuged for 10 min at 14 000
rpm, in 4◦C; the aqueous supernatant was transferred into new tubes and extracted with 1 ml 100% ethanol.
After at least 1 h cooling in -20◦C RNA pellets were obtained by centrifugation (14 000 rpm, 10 min, 4◦C).
Dried pellets were dissolved overnight in 50 µl of RNase-free water. The quality of the RNA samples was
examined using both (i) 1% agarose gel containing formaldehyde and (ii) spectrophotometer.

RNA samples were diluted to 2000 µg/ml, separated on a 1% agarose gel and transferred by capillary
blotting into a Hybond N membrane (Amersham) in 10x saline-sodium citrate (SSC) buffer overnight. Sub-
sequently the membrane was rinsed in 2x SSC, cross-linked in a UV cross-linker and incubated with standard
hybridization buffer. The probe activity was determined by scintillation, using Nick columns. The mem-
brane was pre-hybridized for at least 2 hours in 68◦C, hybridized with a calculated amount (based on the
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scintillation measurement) of denatured DNA probe (3 min at 100◦C) at 68◦C overnight washed in 0.5x SSC
with 0.1% SDS (45min in 68◦C) and pre-developed for 3 hours; the result was view on the Phosphor Imager
using Quantity One software. The actual exposure was done overnight. The membrane was stripped with
0.1% SDS in boiling water (2 rounds 20 min each) and hybridized with another DNA probe.

Additional Western Blots

Yeast cells were cultured in YPD medium (Yeast Peptone D-glucose; 1% yeast extract (Bacto), 2% peptone
(Bacto), 2% glucose). Cultures of 500 ml were grown to mid-exponential phase (OD600=0.7). Samples of
4.5 ml were collected at different time points, distributed evenly into three 1.5 ml tubes per each time point
and frozen immediately in a dry ice ethanol bath. Fully frozen samples were thawed on ice; cell pellets
were harvested by centrifugation and stored at -20◦C for further processing. The pellets (three per time
point) were pooled using 0.5 ml ice cold water, sedimented by centrifugation, suspended in 40 µl loading
buffer (100mM Tris-HCl pH 6.8, 20% glycerol, 200mM DTT, 4% SDS, 10mM NaF, 0.1 mM Na3V04 (sodium
orthovanadate), protease inhibitor (Complete EDTA-free Protease Inhibitor Cocktail tablets, Roche), and
20 mM mercapto-ethanol) and purified by centrifugation. Purified protein extracts were stored at -20◦C
for further processing. The protein content was determined by precipitation with DOC and TCA, using
a protein content determination kit (BioRad). Samples containing 20-25 µg proteins with loading buffer
(1:1) containing bromophenol blue were electrophoresed on a 10% polyacrylamide gel and transferred over
night at 4◦C to a nitrocellulose membrane (Hybond-ECL, Amersham) using a BioRad wet transfer system.
Membranes were blocked with 5% milk (Difco) in TBST and incubated with antibodies: primary - phospho-
p38 MAPK (Thr180/Tyr182) antibody (Cell Signalling), 1:1000 in 5% BSA TBST, over night incubation
at 4◦C; secondary - anti-rabbit antibody HRP-linked IgG (Cell Signalling), 1:2000 in 5% milk TBST, for 1
h at room temperature. Membranes were developed with Lumi Light Western Blotting Substrate (Roche),
scanned using a Fuji Film LAS-1000 CCD camera with Image Reader LAS-1000 Pro V2.6 software and
quantified using Multi Gauge 3.0 software.

2 Experimental Data and Data Processing

Metabolite Data

Metabolite levels were quantified over time by HPLC. The time course for wild type cells was performed four
times and the control with unstressed wild type cells was performed in duplicate. In addition, we conducted
time course experiments for all different strains used in this study (FPS1-∆1, gpd1∆, HOG1-att, hog1∆,
pfk26/27∆) after adding 0.4 M NaCl.

Cell Density Measurements

Optical density was recorded for each experiment. An additional measurement of cell density was performed
for one wild type and one control experiment, respectively. Recorded values are given in Table S1 and Figure
S1.

Cell density (in 106 cells/ml) was fitted to OD with satisfying precision (R2 = 0.959, see also Figure S2)
as

CD(OD) = −6.54824 ·OD2 + 20.5651 ·OD − 4.72751. (1)

This regression allows to calculate the cell density of any given OD measurement with the used spectropho-
tometer and was used to correct uptake and export rates for the increase in cell density over time.

Data Processing and Inference of Missing Data Points

Raw HPLC results in g/l were processed by dividing by the molar mass to obtain mol/l for extracellular and
total samples. For intracellular samples, additional dilution of the medium-free cell fraction in 1 ml water
was accounted for: assuming an average cell volume of 50 femtoliter, the intracellular concentration cprocintra is
calculated from the measured values crawintra as

cprocintra =
crintraaw

molarmass
· 0.001

CD(t) · 106 · 50 · 10−15
(2)

This processing is reproduced in Supplemental Dataset D1.
Samples were collected and measured for total, extra-, and intracellular concentrations. Careful analysis

allows the estimation of one of the three concentrations given that the remaining two and the according
volumes V are known:

3



Since the amount (expressed as mass m) of a metabolite in the total sample must equal the sum of the masses
in extracellular and intracellular samples, i.e.

mtot = min +mex ⇔ ctot · Vtot = cin · Vin + cex · Vex, (3)

we can calculate the intracellular concentration as

cin =
ctot · Vtot − cex · Vex

Vin
. (4)

The total volume is 1 ml, the intracellular volume can be extrapolated from OD measurements and is in a
range of 1

500 to 1
2000 of total volume, so that extracellular volume can be assumed to equal total volume.

This calculation is prone to slight measurement errors, but generally allows inferring missing measure-
ments as shown in Supplemental Dataset D1. Supplemental Figure S3 shows a comparison between estimated
and measured glycerol, indicating inconsistencies in estimated data of FPS1-∆1, hog1∆ and WT1, that could
be easily identified.

The high consistency between the measured and inferred data indicates a high reproducibility of our
experimental results.

This inference is used to generate a time course for gpd1∆ for fitting, for which intracellular glycerol was
not measured.

Reproducibility of Wild Type Experiments

The experimental data obtained from different experiments with the wild type strain are in very good
agreement, however they differ for internal glycerol between repetitions, i.e. WT1 and WT4 (see Supplemental
Figure S3). This difference is due to higher external glycerol in WT 4 (Supplemental Figure S4): The Stl1-
mediated uptake of extracellular glycerol and the reduced Fps1-mediated diffusion of glycerol out of the cell
lead to the observed differences.

The intracellular glycerol of experiments WT2 and WT3 inferred from extracellular and total measure-
ments are similar to the time course observed for WT1 (compare Supplemental Dataset D1).

These results further support reproducibility of our experimental data and a corresponding decreased
glycerol accumulation is observed in model simulations using initial conditions from the WT1 experiment.

Representative Experiments

Each batch culture experiment is affected by slight differences in initial cell density and culture conditions.
Since no steady state is reached, these differences can influence the cellular behavior. This is exemplified
by the difference between WT4 and WT1 intracellular glycerol levels, as described above. To maintain
consistency of datasets used for fitting, all further steps were done using one representative experiment.
For wild type, WT4 was chosen because it exhibits the strongest agreement with previous enzyme assay
experiments (see Supplemental Figure S5) and cell density measurements had been done in this experiment.
Likewise, NoStress2 was chosen as representative experiment for unstressed wild type.

Western Data

Raw Western blot results provided in intensities have been processed as follows:

• Intensities were normalized to the average of the respective wild type experiment to minimize the effect
of single measurement errors in normalization.

• Molecules per cell as reported in Ghaemmaghami et al., 2003 have been converted to mol/cell.

• These values are converted to concentrations assuming an intracellular volume of 50 fl.

• For Hog1PP results, we assumed a peak of 90% Hog1PP of total Hog1 in wild type time course,
assuming that total Hog1 does not change during osmoadaptation.

• For Gpd1 results, we assumed that the value reported in Ghaemmaghami et al., 2003 as the concen-
tration of Gpd1 before stress.

Details of this processing are given in Supplemental Dataset D2, Charts
Hog1PP ALL and Gpd1 ALL.
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Additional Data

The time course of gpd1mRNA used for fitting (see Supplemental Figure S13) was extracted from Klipp
et al., 2005 and scaled. The simulated time course of stl1mRNA qualitatively reproduces experimental
quantifications given in Supplemental Dataset D7.

Prior to the HPLC measurements, enzymatic quantifications of glycerol have been carried out. Processing
of the raw enzyme assay data according to the processing applied to HPLC measurements indicates a high
reproducibility between both data types, as shown in Supplemental Figure S5 for wild type and FPS1-∆1.

In addition to the quantification of intracellular trehalose via HPLC, intracellular trehalose levels have
been quantified via an enzyme assay as described in Supplemental Material and Methods. This quantification
supports the hypothesis that trehalose contributes to long-term adaptation to sustained high osmolarity and
is qualitatively similar to the HPLC data, as shown in Supplemental Figure S6.

Additionally, Western blot Hog1PP quantifications, enzymatic glycerol quantifications, enzymatic tre-
halose quantifications, and Northern blot mRNA quantifications are available in Supplemental Datasets D4,
D5, D6 and D7.

Data Compilation

The compiled data as described above has been used to estimate model parameters. An overview of the most
important data series is given in Supplemental Figure S7.

For better visualization, the extracellular glycerol concentration in gpd1∆ in comparison to control is
indicated in Supplemental Figure S8.

HOG1-att

As described in the main text, we infer a regulatory effect of Hog1 on Fps1 from results obtained with the
HOG1-att strain. In this strain, Hog1 is tethered to the membrane. Direct physical interaction between
Hog1 and Fps1 has been reported for different stress conditions (Thorsen et al., 2006 and Mollapour and
Piper, 2007). Moreover, the discrepancy between glycerol concentration in model simulations of hog1∆ and
HOG1-att could not be attributed to mechanisms implemented so far. If Hog1 regulates the abundance of
open Fps1 under hyperosmotic conditions, mutations in HOG1 do affect the abundance of open Fps1 and its
regulation.

In hog1∆ strains, an increased basal glycerol efflux compared to wild-type has been observed by Tamas
et al., 1999. This is in agreement with our observations and conjectures. Currently, no experimental data is
available on the effect of HOG1-att on basal glycerol efflux or Fps1 transport rate. However, an apparent
effect of HOG1-att is an increased concentration of Hog1 at the plasma membrane so that any interactions
between membrane-bound effectors and Hog1 are likely increased (compare Supplemental Figure S9).

3 Modeling Details

Here, we present detailed description of the mathematical model. A graphical overview of the model topology
in SBGN format is given in Supplemental Figure S10.

Biophysical Changes

Changes in cell volume (basal solid volume, Vb, and an osmotically active volume Vos, cell surface area,
osmotic pressure (as a function of external osmotic pressure, internal osmolyte concentrations, and turgor
pressure) and turgor pressure (as function of Vos).

Glycolysis Module

The glycolysis module was constructed on the basis of existing models, e.g. Klipp et al. 2005 and Teusink
et al., 2000. In order to reduce the number of parameters in the model and reach a high coverage of
model variables by experimental data, glycolysis was simplified compared to more extensive models. While
known main regulatory nodes in osmoadaptation were included in the model (G6P , F16DP , F26DP , triose)
despite lacking data, most other metabolites for which no data was available were removed and the respective
reactions were lumped together. This results in mostly unidirectional reactions in this model of glycolysis
because each lumped reaction that includes at least one unidirectional reaction is modeled as unidirectional.

Along with unobserved metabolites, we also omitted cofactors such as NADH/NAD and ATP/ADP. This
increases model reliability because
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• No data on cofactors during hyperosmotic stress is available. Additionally, reliable measurement of
these concentrations requires sophisticated methods that are difficult to integrate in this project (see
e.g. Canelas et al., 2008 on the determination of cytosolic NADH/NAD concentrations).

• Under steady state conditions, ATP, ADP and NADH, NAD concentrations are constant. In a model
describing the temporal dynamics of osmoadaptation, these concentrations can be expected to vary
and this would require to model all glycolytic reactions with very high detail as well as modeling all
other reactions that consume/produce these cofactors and change during hyperosmotic stress. This list
of additional reactions is currently unknown and could comprise membrane and cell wall maintenance
reactions as well as energy-dependent ion transport for which no data is available.

Reactions that do not represent major osmo-dependent regulatory steps are described using Michaelis-
Menten kinetics: v2(t), v3(t), v5(t), v6b(t), v7(t), v8(t), v9(t) and v15r.

Reaction v4 (G6P → F16DP ) is described with a Michaelis-Menten kinetics with two different Vmax: kv4.1
and kv4.2 for F26DP -activated phosphofructokinase and non-activated phosphofructokinase, respectively.
Hence, the contribution of either depends on the binding of F26DP to phosphofructokinase such that

v4(t) =(kv4.1 ·
F26DP (t)kv4.5

(F26DP (t) + kv4.3)kv4.5

+ kv4.2 · (1−
F26DP (t)kv4.5

(F26DP (t) + kv4.3)kv4.5
))

· (G6P (t)/kv4.4)8

1 + (G6P (t)/kv4.4)8)
(5)

Reaction v6 (triose→ glycerol) is described as a Michaelis-Menten kinetics with the enzyme concentration
(Gpd1(t)) explicitly mentioned.

Transport Module

Glucose transport is described as Michaelis-Menten kinetics. This is a reasonable simplification that repro-
duces the time course of extracellular glucose for all experiments (see Supplemental Figure S14).

Transport rates of trehalose, acetate and ethanol (v10, v11, v12) are specified as dependent on the gradient
of intracellular and extracellular concentrations Cintra and Cextra:

vdiff (t) = k1 · CellSurface(t) · (Cintra − k2 · Cextra) (6)

where k1 represents the abundance of transport proteins and k2 accounts for specific properties of the respec-
tive transporter type (where k2 = 1 describes diffusion). Although this description simplifies the underlying
biology, it allowed for a concise representation.

Diffusion of glycerol through Fps1 is described accordingly, only taking the abundance of open Fps1
(Fps1r) into account. Uptake of glycerol through Stl1 is again described using a Michaelis-Menten kinetics
explicitly referencing the concentration of Stl1.

In batch culture experiments, cell density increases, as illustrated in Supplemental Figure S11. Although
the cellular state does not change (e.g. intracellular metabolite concentrations), the global transport rates
that affect extracellular concentrations are influenced by cell density.

Because ODE models classically describe a fixed number of cells or one single cell, the rates of extracellular
concentration changes are multiplied by the ratio of the cell density a5(t) as computed from OD measurements
and the initial cell density, kbatch. Because the ratio of extracellular to intracellular volume is about 2000
(see above), the changes of extracellular concentrations are calculated as

±vtransport(t)/2000 · a5(t)

kbatch
(7)

Biomass and Adaptation Module

The majority of reactions in this module is described using Mass Action kinetics (all translation and degra-
dation reactions, and inactivation of activated compounds): v16r(t), v17r(t), v18f (t), v18r(t), v19r(t), v20r(t),
v21f (t), v21r(t), vAOG2r(t).

To simplify the model, the signaling cascades activating Hog1 were not included. This greatly reduces the
number of model variables and parameters while Hog1 activation can be faithfully modeled because previous
studies show that Hog1 activity is negatively correlated with cell volume (Klipp et al, 2005 and Muzzey et al.,
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2009). Accordingly, Hog1 activity is described as Mass Action kinetics dependent on volume:
(

kv16f.2

a1(t)

)kv16f.3

.

The exponent kv16f.3 is necessary to induce a strong change in Hog1 activity due to a comparably light
decrease in cell volume. Since the initial volume is regained in our model but experimentally measured
Hog1PP levels do not return to basal levels, we also included a dependency on extracellular osmolarity
(a2(t)) such that the rate of Hog1 activation becomes

v16f (t) = Hog1(t) · a2(t) · kv16f.1 ·
(
kv16f.2
a1(t)

)kv16f.3

. (8)

The rate of activation of the Hog1-independent activator of Gpd1-mediated glycerol production (AOG2)
is described accordingly, not taking the external osmolarity into account. This activator is necessary to
reproduce transcriptional profiles of GPD1 in hog1∆ as described in Rep et al., 1999.

GPD1 transcription depends on Hog1PP, the Hog1-independent activator AOG2 mentioned above and a
basal term. Interaction between Hog1 and GPD1 is influenced by further factors and the increase in GPD1
expression is stronger than in Hog1 phosphorylation. Hence, we used Hill kinetics to describe the activation
of GPD1 transcription. Since we have no knowledge on the nature of AOG2, we also used Hill kinetics for
the second term in v17:

v17f (t) =
kv17f.1 ·Hog1PP (t)kv17f.6

kv17f.2 +Hog1PP (t)kv17f.6
[Hog1-dependent]

+
kv17f.3 ·AOG2(t)kv17f.7

kv17f.4 +AOG2(t)kv17f.7
[Hog1-independent]

+ kv17f.5 [basal]. (9)

Transcription of STL1 (v20) is specified in the same manner with the exception that the Hog1-independent
term is omitted.

Activation of Pfk26/27 (v19) is defined by modified mass action kinetics to minimize additional parameters
in the description of this experimentally sparsely characterized reaction.

Changes in the abundance of open Fps1 (v22) are stated as an equilibrium between positive and negative
terms, where the opening terms are negatively affected by turgor and Hog1PP. Turgor-mediated closure of
Fps1 is widely accepted in literature (Klipp et al., 2005, Mettetal et al., 2008) and the Hog1PP dependent
term is included based on our findings as described in the main text.

Biomass production (v14) was initially included into the model to allow for steady intracellular metabo-
lite concentrations before stress and in unstressed models because the inflow of glucose exceeds the efflux of
trehalose, acetate, ethanol and glycerol. To maintain a concise model, biomass production is described as
one reaction branching off glycolysis from G6P. In order to reproduce experimentally observed glycerol accu-
mulation as well as experimentally observed ethanol and acetate production in model simulations, biomass
production must be rerouted to glycerol and pyruvate. Although Hog1 has been reported to inhibit cell cycle
progression under hyperosmotic conditions (Escotet et al., 2004 and Clotet et al., 2006), we also observed
diminished growth in hog1∆ experiments. We assume the decrease in biomass production to be influenced
by volume-dependent signaling mechanisms and the cost of maintaining a high intracellular osmolarity in the
face of sustained high salinity. Hence, v14 is described as Michaelis-Menten kinetics modified by cell volume
V os and external osmolarity a2(t).
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Model Equations

Rate Equations for Biochemical Reactions

Differential equations as used in the model for WT. For parameter values and initial values, please refer to
the SBML model in further Supplemental Information. All reaction rates are given in M

s

v1(t) = kv1.1 ·
glce(t)/kv1.2

1 + glce(t)/kv1.2

v2(t) = kv2.1 ·
glci(t)/kv2.2

1 + glci(t)/kv2.2

v3(t) = kv3.1 ·
G6P (t)/kv3.2

1 +G6P (t)/kv3.2
− kv3.4 ·

trei(t)/kv3.4
1 + trei(t)/kv3.4

v4(t) =

(
kv4.2 ·

(
1− F26DP (t)kv4.5

(F26DP (t) + kv4.3)kv4.5

)
+ kv4.1 ·

F26DP (t)kv4.5

(F26DP (t) + kv4.3)kv4.5

)
· (G6P (t)/kv4.4)2

1 + (G6P (t)/kv4.4)2
· |G6P (t)|
G6P (t)

v5(t) = kv5.1 ·
F16DP (t)/kv5.2

1 + F16DP (t)/kv5.2
− kv5.3 ·

triose(t)/kv5.4
1 + triose(t)/kv5.4

v6(t) = kv6.1 ·Gpd1(t) · triose(t)kv6.2

kv6.3 + triose(t)kv6.2

v6b(t) =
kv6b.4 · triose(t)2/kv6b.5

1 + triose(t)2/kv6b.5

v7(t) = kv7.1 ·
triose(t)/kv7.2

1 + triose(t)/kv7.2

v8(t) = kv8.1 ·
pyr(t)/kv8.2

1 + pyr(t)/kv8.2

v9(t) = kv9.1 ·
pyr(t)/kv9.2

1 + pyr(t)/kv9.2

v10(t) = kv10.1 · a4(t) · (trei(t)− kv10.2 · tree(t))
v11(t) = kv11.1 · a4(t) · (aci(t)− kv11.2 · ace(t))
v12(t) = kv12.1 · a4(t) · (EtOHi(t)− kv12.2 · EtOHe(t))

v13a(t) = Fps1r(t) · kv13a.1 · a4(t) · (glyci(t)− glyce(t))

v13b(t) = kv13b.1 · Stl1(t) · glyce(t)

kv13b.2 + glyce(t)

v14(t) =

kv14.1V
kv14.3
os

V
kv14.3
os +kv14.2

(
1− a2(t)

a2(t)+kv14.4

)
G6P (t)/kv14.5

1 +G6P (t)/kv14.5

v15f (t) = kv15f.1 · Pfk2a(t) · G6P (t)

kv15f.2 +G6P (t)
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v15r(t) = kv15r.1 ·
F26DP (t)

kv15r.2 + F26DP (t)

v16f (t) = Hog1U(t) · a2(t) · kv16f.1 ·
(kv16f.2
a1(t)

)kv16f.3

v16r(t) = kv16r.1 ·Hog1P (t)

v17f (t) =
kv17f.1 ·Hog1P (t)kv17f.5

Hog1P (t)kv17f.5 + kv17f.2
+

kv17f.3 ·AOG(t)kv17f.6

AOG(t)kv17f.6 + kv17f.4
+ kv17f.7

v17r(t) = kv17r.1 · gpd1m(t)

v18f (t) = gpd1m(t) · kv18f.1
v18r(t) = kv18r.1 ·Gpd1(t)

v19f (t) = kv19f.1 ·Hog1P (t) · Pfk2i(t)

v19r(t) = kv19r.1 · Pfk2a(t)

v20f (t) =
kv20f.1 ·Hog1P (t)kv20f.x

Hog1P (t)kv20f.x + kv20f.2
+ kv20f.3

v20r(t) = kv20r.1 · stl1m(t)

v21r(t) = kv21r.1 · Stl1(t)

v21f (t) = stl1m(t) · kv21f.1

v22(t) =
kv22.1 · (−a3(t))

kv22.3 + (−a3(t))
·
(

1− Hog1P (t)

Hog1P (t) + kv22.2

)
− kv22.1 · Fps1r(t)

vAOG2r(t) = kvAOG2r.1 ·AOG2a(t)

vAOG2f (t) = AOG2i(t) · kvAOG2f.2 ·
(kvAOG2f.1

a[4]

)kvAOG2f.3

Rate Equations to Account for Biophysical Changes

Rates of change of Vos due to osmotic activity inside and outside the cell and changes in intracellular
concentrations due to volume changes are computed as described here.

vVos
(t) = kvV.1a4(t) ·

(
a3(t)− kvV.2RT

(
glyce(t) + a2(t)− (glyci(t))−Osmoi(t)

))
vV species(t) = species(t) · vVos(t)

Vos(t)

Where vV species(t) indicates the volume-dependent change of intracellular concentration and is computed for
each intracellular concentration as indicated in the differential equations.
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Differential Equations

The rate equations given above are used to compute the changes in concentrations according to the following
differential equations.

dglce
dt

= −v1(t)/c · a5(t)

kbatch
dglci

dt
= v1(t)− v2(t)− vV glyci(t)

dG6P

dt
= v2(t)− 2v3(t)− v14(t)− v15f (t) + v15r(t)− vV G6P (t)

dtrei
dt

= v3(t)− v10(t)− vV trei(t)

dF16DP

dt
= v4(t)− v5(t)− vV F16DP

dF26DP

dt
= v15f (t)− v15r(t)

dtriose

dt
= 2v5(t)− v6(t)− v6b(t)− v7(t)− vV triose(t)

dglyci
dt

= v6(t) + v6b(t)− v13a + v13b(t)− vV glyci(t)

dpyr

dt
= v7(t)− v8(t)− v9(t)− vV pyr(t)

daci
dt

= v8(t)− v11(t)− vV aci(t)

dEtOHi

dt
= v9(t)− v12(t)− vV EtOHi

(t)

dtree
dt

= v10(t)/Vextra ·
a5(t)

kbatch
dglyce

dt
=

a5(t)

kbatch
· (v13a(t)/Vextra − v13b(t)/Vextra)

dace
dt

= v11(t)/Vextra ·
a5(t)

kbatch
dEtOHe

dt
= v12(t)/Vextra ·

a5(t)

kbatch
dBM

dt
= v14(t)

dHog1P

dt
= v16f (t)− v16r(t)− vV Hog1P (t)

dHog1U

dt
= −v16f (t) + v16r(t)− vV Hog1U (t)

dgpd1m

dt
= v17f (t)− v17r(t)− vV gpd1m(t)

dGpd1

dt
= v18f (t)− v18r(t)− vV Gpd1(t)
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dstl1m

dt
= v20f (t)− v20r(t)− vV stl1m(t)

dStl1

dt
= v21f (t)− v21r(t)− vV Stl1(t)

dFps1r

dt
= v22(t)

dPfk2a

dt
= v19f (t)− v19r(t)− vPfk2a(t)

dPfk2i

dt
= −v19f (t) + v19r(t)− vV Pfk2i(t)

dVos
dt

= vVos
(t)

dOsmoi
dt

= −vV Osmoi(t)

dAOG2a

dt
= vAOG2f (t)− vAOG2r(t)

dAOG2i

dt
= −vAOG2r(t) + vAOG2r(t)

Algebraic equations

Algebraic equations used in the wild-type model (a6(t) is a fit to experimental data for each strain):

Vm a1(t) = Vb + Vos(t)

Osmoe a2(t) = Osmoe(0) + u1(t) · 0.8

Turgor a3(t) =

{
a3(0) ·

(
1− Vos(0)−Vos(t)

Vos(0)−Va3=0

)
if Vos(t) > Va3=0

0 else

CellSurface a4(t) = (36.0 · π)1/3 · a1(t)2/3

celldensity a5(t) = −6548240 · a6(t)2 + 30565100 · a6(t)− 4727510

OD a6(t) = 2.94557× 10-9t2 + 6.49182× 10-5t+ 0.595608

Experimental data for intracellular concentrations was processed assuming a constant volume. Hence, al-
gebraic equations are used to compute intracellular concentrations without the effect of volume changes to
compare with experimental data:

speciesNoV ol aspecies(t) = species(t) · Vos(t)/Vos(0)

For all intracellular species (Hog1U , Hog1P , Gpd1, gpd1m, glci, pyr, aci, EtOHi, trei, F16DP , triose,
G6P , stl1m, Stl1, glyci).

Salt stress is introduced into the model assuming a mixing time of 5 seconds from the onset of the stress
at ts:

stress u1(t) =


0 if t < ts,

(t− ts)/5 if ts ≤ t ≤ ts + 5

1 else

Model Variants for Mutant Strains

Besides initial conditions and the function to reproduce experimentally determined OD according to the
respective experimental data, the models for each mutant strain had to be modified to reproduce the biological
changes with respect to osmoadaptation.

Wherever possible, we applied minimalistic modification not taking into account possible wider effects of
the mutations on cellular state. Full models are given as additional Supplemental Material.

Changes for FPS1-∆1

• Initial concentration of Fps1 is increased/
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• Reaction v22(t) is set to 0.

• Reaction v16r(t) contains a time-dependent parameter to force a decrease in Hog1 activity after t =
4800s as observed in experimental data.

The variable parameter in v16r(t) is necessary because Hog1 activity in our model would only diminish if
volume is regained. Physiologically, Hog1 activity is not only controlled by volume but also by feedback
through phosphatases, which is included via this modification.

Changes for gpd1∆

• Initial concentrations for Gpd1 and gpd1mRNA are set to 0.

• Reaction v6(t) is set to 0.

• Reaction v17f (t) is set to 0.

Changes for HOG1-att

• The first, Hog1-dependent part of reaction v17f (t) is set to 0, only Hog1-independent and basal tran-
scription remains.

• The first, Hog1-dependent part of reaction v20f (t) is set to 0, only basal transcription remains.

• Reaction v22(t) is modified to account for the higher interaction of membrane-tethered Hog1 with Fps1:

v22(t) =kv22.1 · 1.5 ·
|a3(t)|

kv22.2 + |a3(t)|

· (1.0− Hog1PP (t) · 1.29462

(Hog1PP (t) · 1.29462 + kv22.3
)

− kv22.1 · Fps1r(t).

Changes for hog1∆

• Hog1 and Hog1PP initial concentrations set to 0.

• v16f (t) and v16r(t) set to 0.

• v19f (t) and v19r(t) set to 0.

• v22(t) contains a time-dependent parameter that forces reopening of Fps1 after t = 5536s to reproduce
increase in extracellular glycerol as observed in experiments.

The time-dependent parameter in v22(t) does not give a mechanistic explanation why Fps1 reopens (in our
opinion the only sensible reason for an increase in extracellular glycerol as observed in experiments) while
Turgor is not regained, but is necessary to reproduce experimental data.

Changes to pfk26/27∆

• Initial concentrations of Pfk26/27a and Pfk2627i set to 0.

• To avoid numerical issues, reactions v19f (t), v19r(t), v15f (t), and v15r(t) were set to 0.

Model Simulations

Simulation of additional model variables not presented in the main text are given in Supplementary Figure
S12, S13 and S14.
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4 Parameter Estimation Details

Comparison to Processed Experimental Data

Experimental data was processed assuming a constant cell volume (see above). The model contains changes
of cellular volume which affect intracellular concentrations. The simulated volume-sensitive intracellular
concentrations Cintra(t) are used in model equations. For parameter estimation, variables that calculate
volume-insensitive intracellular concentrations Cmeasured(t) are used:

Cmeasured(t) = Cintra(t) · V os(t)
V os(0)

(10)

In order to reduce the parameter boundaries in parameter estimation, some reactions parameters were
estimated individually with Copasi. This is only possible for reactions for which all reactants, products and
modifiers are well determined in experimental data. Here, this is the case for reactions v1 and v16f/r, for
example. The resulting estimates have been used to guide subsequent large scale parameter estimation.

Estimation Methods

We constructed models for wild-type, FPS1-∆1, gpd1∆, HOG1-att, hog1∆ and pfk26/27∆. Initially, each
model was fitted independently to the corresponding experimental data. Simulating one model with the
parameter set (excluding initial concentrations) of another (e.g. the wild-type model with parameters from
the HOG1-att model) did not yield a satisfactory agreement with experimental data.

To generate one parameter set that suits all models, we combined all models and datasets in PottersWheel
and estimated parameters using Simulated annealing and TrustRegion in linear and logarithmic parameter
space. The resulting fits were analyzed and fitting was refined:

1. In order to improve the goodness of fits, trehalose was excluded from parameter estimation because
the model contains no regulation of trehalose production, consumption and transport and can hence
not be expected to reproduce trehalose dynamics.

2. In order to improve the goodness of fits concerning reproduction of adaptation dynamics, noisy metabo-
lite data (e.g. intracellular ethanol for WT4) was removed.

3. In order to reduce computational costs and numerical difficulties, the set of parameters to be estimated
was reduced iteratively. This is especially relevant for parameters used as exponents (e.g. kv16f.3).

Estimation Results

In the series of fits that includes the parameter set selected for the main text, we fitted 87 parameters,
including 4 to describe additional effects in the hog1∆ and HOG1-att strains, to a total of 995 data points.
Of 308 fitting runs, at least 105 did not produce usable results due to numerical errors (for some of the
models, integration fails, no time course is produced and an erroneous, small χ2 is reported). The parameter
set used for simulations has the lowest χ2-value without numerical errors: χ2 = 643.274.

The high χ2 can be largely attributed to differences between simulation and experimental data for FPS1-
∆1 and to experimental data for intracellular acetate, ethanol,glucose and pyruvate where the overall shape
of the experimental data is reproduced well but individual measurement errors contribute significant er-
rors. Additionally, the time course for most intracellular metabolites is smooth compared to the large
osmoadaptation-dependent changes in, for example, intracellular glycerol and Hog1PP.

The 10 best fits with χ2 between 619.34 and 656.082 were found a total 15 times, the best fit was found 4
times. These best fits are very similar considering χ2 error, even of individual model variables, and parameter
values. Comparison of the 10 best fits thus indicates that fitting multiple strains greatly reduces the number
of possible parameter sets because the data for each strain must be reproduced.

5 Modifications to improve model of FPS1-∆1

All genetic perturbations were implemented including all their effects to the best of our knowledge. However,
genetic perturbations inadvertandly lead to an adaptation of the cellular state to cope with the effect of the
perturbation. This can in turn generate indirect effcts that need to be accounted for in strains where the
general state is significantly affected by the genetic perturbation. Additionally, a perturbation in fps1 can
induce changes in dynamics of Hog1 if the interaction between Hog1 and Fps1 suggested in this work is true.
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The following suggestion is highly speculative and presents just one possibility out of potentially many to
improve the model.

The fit to data from FPS1-∆1 can be improved by changing parameter values. These deviations from
the general parametrization can be interpreted as modifications to the cellular state that FPS1-∆1 imposes
on the cells. We have found one set of such modifications which improves the fit to experimental data, see
Supplemental Figure S16. The changes applied are:

• decrease gpd1 transcription by a factor of 10,

• decrease gpd1mRNA degradation by a factor of 80,

• decrease Gpd1 degradation by a factor of 128.

the first modification could be attributed to a slower translocation to the nucleus of Hog1, the latter two
modifications could be the results of cellular adaptation to FPS1-∆1 to increase gpd1 production in the
unstressed state already. However, this parametrization results in a Gpd1 concentration up to 6 times
higher than measured in FPS1-∆1 and reproduced well with the general parametrization (see Figure S13C).
Therefor, it seems as if FPS1-∆1 cells likely increase glycerol production not by an increase in Gpd1 but by
an alternative route, e.g. Gpd2.

6 Response Coefficients

Scaled time-dependent response coefficients (RCs) have been computed for the model as described in main
text (mathematica code for computation is available upon request). Response coefficients describe the effect of
small variations in one parameter on a certain concentration. Analysis of response coefficients is demanding
for a model of the size used here (6 models with about 90 parameters and 25 model variables) because
of the number of response coefficients (see Supplemental Figure S15 for an extended selection of response
coefficients). Two pitfalls for the analysis of response coefficients must be noted:

• RCs measure the effect of a change in a single parameter. Hence, RC analysis likely does not match
observed biological perturbation effects quantitatively because living cells usually adjust to a perturba-
tion (as shown in this manuscript). Adjusting to the perturbation in a single parameter usually involves
changing additional parameters. This is especially true for perturbations in glycolytic pathways, e.g.
the effect of pfk26/27∆ and the corresponding RC depicted in Figure S15.

• RCs depend on the usage of the parameter inside a rate law. A negative RC for a Km value would
indicate an increase in species concentration when the Km-value is increased. Likewise, a single RC
does not necessarily reflect the influence of a reaction.

• RCs reflect the effect of small changes in parameter values. For variables with a switch-like behavior (e.g.
Hog1 and Fps1 in our model, compare Supplemental Figure S15), a small change in a corresponding
parameter will not affect the variables state and hence not influence the overall system.

RCs can visualize the dramatic changes in the contribution of different mechanisms to an overall effect,
as exemplified in Supplemental Figure S15B, E, F: One part of the changes in response is due to the direct
effects of the perturbations, but the system passively adjusts to the perturbation and a different mechanisms
contribution to the overall process is increased.
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