Supplemental material

JCB

Figure S1. Silencing controls and representative two-dot assay images. (A) Silencing in the xyz Δ strain is maintained. Serial dilutions of strains spotted onto YPD growth control (top) or YMD plates lacking histidine (bottom) to assay for silencing of the HIS3 gene inserted in place of the XYZ sequence in the heterochromatic region of HMR. A strain containing HIS3 at the XYZ locus in a *sir4* Δ background is used as a control for lack of silencing of HIS3. Strains containing the HIS3 gene or containing a his3-1 mutation at the native HIS3 locus are used as additional controls. (B) DSB repair proteins and tethered silencing Schematic of constructs containing 5G-E-B at HMR-E and B-5G at HMR-I flanking the MATa1 gene. 10-fold serial dilutions on YMD-Trp (growth control) and an a strain lawn (silencing) in an otherwise α strain WT background. Growth signifies silencing of the otherwise active MATa1 gene. (C) Representative two-dot images. Representative images from WT and mutants in trans-factor assayed in this study. GBD, Gal4 DNA binding domain. Bar, 1,000 nm.

Figure S2. **Controls for HM proximity measurements.** (A) Bar graphs of WT and *mre 11* Δ strains (from Fig. 4 A), in which the distance between HML and HMR are binned into categories of specific distances from two independent strains and three independent trials. Data from each trial was pooled and binned as previously described (Miele et al., 2009); therefore, error bars are not included. (B) Boxplots of the distance between TetR-YFP and CFP-Lacl foci in cells of a given strain scored by bud index. Unbudded cells were considered in G1, and budded cells were considered in S/G2. (WT G1, *n* = 192; WT G2, *n* = 136; *mre11* Δ G1, *n* = 103; *mre11* Δ G2, *n* = 93; *rad51* Δ G1, *n* = 157; *rad51* Δ G2, *n* = 105; *htaS129**G1, *n* = 148; and *htaS129**G2, *n* = 106). P-values were calculated using a Mann-Whitney U test (Wilcoxon test) in R. (WT data are the same as presented in Fig. 1 B and are included here to simplify comparison). Data are combined from at least two independent trials. (C) Boxplots of the distance between TetR-YFP and CFP-Lacl foci in cells of a given strain in either *MATa* or *MATa* cells. (WTa, *n* = 153; WT α , *n* = 152; *mre11* $\Delta \alpha$, *n* = 221; *mre11* $\Delta \alpha$, *n* = 289). P-values were calculated using a Mann-Whitney U test (Wicoxon test) in R. (D) Boxplots of the distribution of diameters in a given strain. Data presented in B–D are measurements from at least two independent trials. (E) Boxplots of the (median distance of *HM* [from Fig. 4])/(median diameter [from D]) of a given strain. Error bars are not given, as data are simply a ratio of two median measurements. The boxes represent the middle 50% of data points with the black lines showing the median of distances. Outliers are defined as distances >1.5 times the interquartile range (dashed lines) and are represented by open circles.

Figure S3. **ChIP at HM loci.** (A) Schematic of qPCR amplicons at HMR and HML. (B) ChIP-qPCR plots of Pol- ε enrichment normalized to ARS315 at HMR and HML. Plots are a mean of at least two independent cross-links and four IPs. Error bars are standard deviation from the mean. (C) ChIP-qPCR plots of γ H2A enrichment at the HML locus in an hmr-ed strain. (D) ChIP-qPCR plots of H3 enrichment at the HMR locus in an tT(AUG)CA strain. Plots are a mean of three cross-links and six IPs. All amplicons normalized to the ACT1 locus. WT data are the same as in Fig. 6 and are included for ease of comparison. Error bars are standard deviation from the mean. P-values by t test are assigned as ***, P < 0.001; **, P < 0.01; and *, P < 0.05.

Table S1. Yeast strains used in this study

ROY No.	Genotype	Experiment
ROY1685	MATα HMR(s288c) ADE2 his3 leu2 lys2 trp1	ChIP
ROY1681	MAT α HMR(s288c) ADE2 tT(AGU)C Δ his3 leu2 lys2 trp1 ura3	ChIP
ROY4819/20	MATα HMR(s288c) eΔ::URA3 ADE his3 leu2 lys2 trp1	ChIP
ROY4821/22	MATa HMR(s288c) Pol-ε-HA::LEU2 lys2 ADE2 his3 lys2 trp1 ura3	ChIP
ROY4825	MATa HMR(s288c) SCC2-13×myc::KanMx ADE2 his3 leu2 lys2 trp1 ura3	ChIP
ROY4826	MATα HMR(s288c) SCC2-13×myc::KanMx ADE2 hta1S129* hta2S129* his3 leu2 lys2 trp1 ura3	ChIP
ROY4923/24	MATα HMR(s288c) SMC6-TAP::HIS3 HMR::S288c ADE2 lys2	ChIP
ROY4925/26	MATa HMR(s288c) Mcd1-13×myc::KanMx ADE2	ChIP
ROY4927/28	MATα HMR(s288c) BRN1-HA::KanMx ADE	ChIP
BYS48/ ROY4830	MATa/α HML-tetO::LEU2 HMR-LacO::TRP1 CFP-LacI tetR-YFP::ADE2 LYS2	Two-dot microscopy; Miele et al., 2009
ROY4831/32	MAT α /a HML-tetO::LEU2 HMR-LacO::TRP1 CFP-Lacl tetR-YFP::ADE2 mre11 Δ ::HIS3 LYS	Two-dot microscopy
ROY4833/34	MATa HML+tetO::LEU2 HMR-LacO::TRP1 CFP-LacI tetR-YFP::ADE2 e∆::URA3 LYS2	Two-dot microscopy
ROY4835/36	MATa HML+tetO::LEU2 HMR-LacO::TRP1 CFP-LacI tetR-YFP::ADE2 xyz∆::HIS3	Two-dot microscopy
ROY4837	MATα HML-tetO::LEU2 leu2-1::LacO(63×)::LEU2 hmr∆::URA3 CFP-LacI tetR-YFP::ADE2	Two-dot microscopy
ROY4838	MATa HML-tetO::LEU2 leu2-1::LacO(63×)::HMR::LEU2 hmr∆::URA3 CFP-LacI tetR-YFP::ADE2	Two-dot microscopy
ROY4839/40	MATa HML+tetO::LEU2 leu2-1::LacO(63×)-HMR::LEU2 hmr∆::URA3 CFP-LacI tetR-YFP::ADE2 sir4∆::KanMx	Two-dot microscopy
ROY4841	MATa HML+tetO::LEU2 CFP-LacI tetR-YFP::ADE2 LacO(63×)::ChrVI-R::LEU2 hmr∆::URA3 LYS2	Two-dot microscopy
ROY4842	MATα HML-tetO::LEU2 CFP-LacI tetR-YFP::ADE2 LacO(63×)::ChrVI-I::LEU2 hmrΔ::URA3 LYS2	Two-dot microscopy
ROY4843	MATα HML-tetO::LEU2 CFP-LacI tetR-YFP::ADE2 LacO(63×)::ChrVI-R::HMR::LEU2 hmrΔ::URA3 LYS2	Two-dot microscopy
ROY4844	, MATα HML-tetO::LEU2 CFP-LacI tetR-YFP::ADE2 LacO(63×)::ChrVI-I::HMR::LEU2 hmrΔ::URA3 LYS2	Two-dot microscopy
ROY4929/30	, MATa/α LacO(63×)::ChrVI-16kb::LEU2 LacO963x)::ChrVI-207kb::LEU2 hmrD::URA3 LacI-GFP::ADE2	Two-dot microscopy
ROY4931/32	MATa/α LacO(63×)::ChrVI-16kb::HML::LEU2 LacO(63×)::ChrVI-207kb::HMR::LEU2 hmrD::URA3 Lacl- GFP::ADE2s	Two-dot microscopy
ROY4849/50	MAT α /a HML-tetO::LEU2 HMR-LacO::TRP1 CFP-Lacl tetR-YFP::ADE2 scc2-D730V::HYG	Two-dot microscopy
ROY4851/52	MATa/α HML-tetO::LEU2 HMR-LacO::TRP1 CFP-LacI tetR-YFP::ADE2 rad14Δ::LEU2	Two-dot microscopy
ROY4853/54	MATa HML+tetO::LEU2 HMR-LacO::TRP1 CFP-Lacl tetR-YFP::ADE2 LYS2 lif14::KanMX	Two-dot microscopy
ROY4855/56	MATa/α HML-tetO::LEU2 HMR-LacO::TRP1 CFP-LacI tetR-YFP::ADE2 rad51Δ::HIS3 LYS	Two-dot microscopy
ROY4859/60	MAT HML-tetO::LEU2 HMR-LacO::TRP1 CFP-Lacl tetR-YFP::ADE2 sir44::URA3 lys-	Two-dot microscopy
ROY4861/62	MATa HML+tetO::LEU2 HMR-LacO::TRP1 CFP-LacI tetR-YFP::ADE2 LYS2 exo14::KanMX	Two-dot microscopy
ROY4863	MATa HML+tetO::LEU2 HMR-LacO::TRP1 CFP-LacI tetR-YFP::ADE2 rad504::TRP1 LYS	Two-dot microscopy
ROY4864	MATa HML+tetO::LEU2 HMR-LacO::TRP1 CFP-LacI tetR-YFP::ADE2 LYS2 sae2∆::KanMX	Two-dot microscopy
ROY4865	MATa HML+tetO::LEU2 HMR-LacO::TRP1 CFP-Lacl tetR-YFP::ADE2 xrs2∆::LEU2 LYS	Two-dot microscopy
ROY4866/67	MATa HML+tetO::LEU2 HMR-LacO::TRP1 CFP-LacI tetR-YFP::ADE2 rdh54∆::KanMX LYS	Two-dot microscopy
ROY4868/69	MATa HML+tetO::LEU2 HMR-LacO::TRP1 CFP-LacI tetR-YFP::ADE2 rad54∆::KanMX LYS	Two-dot microscopy
ROY4870/71	Matα/a HML-tetO::LEU2 HMR-LacO::TRP1 CFP-LacI tetR-YFP::ADE2 esc2Δ::HIS3 lys2	Two-dot microscopy
ROY4872/73	MATa HML+tetO::LEU2 HMR-LacO::TRP1 CFP-LacI tetR-YFP::ADE2 rad524::KanMX LYS	Two-dot microscopy
ROY4876/77	MATa HML+tetO::LEU2 HMR-LacO::TRP1 CFP-Lacl tetR-YFP::ADE2 LYS2 tel14::KanMX	Two-dot microscopy
ROY4878/79	MATα HML-tetO::LEU2 HMR-LacO::TRP1 CFP-Lacl tetR-YFP::ADE2 mec1Δ::HIS3 sml1Δ::KanMX	Two-dot microscopy
ROY4880/81	MATα/a HML-tetO::LEU2 HMR-LacO::TRP1 CFP-Lacl tetR-YFP::ADE2 LYS hta1S129* hta2S129*	Two-dot microscopy
ROY4882/83	MATa HML+tetO::LEU2 HMR-LacO::TRP1 CFP-LacI tetR-YFP::ADE2 nup60∆::KanMX LYS	Two-dot microscopy
ROY4884/85	MATa HML+tetO::LEU2 HMR-LacO::TRP1 CFP-LacI tetR-YFP::ADE2 LYS2 slx5∆::KanMX	Two-dot microscopy
ROY4886/87	MATa/α HML-tetO::LEU2 HMR-LacO::TRP1 CFP-LacI tetR-YFP::ADE2 LYS2 nup84Δ::KanMX	Two-dot microscopy
ROY4888/89	MATa HML+tetO::LEU2 HMR-LacO::TRP1 CFP-LacI tetR-YFP::ADE2 LYS2 slx8Δ::KanMX	Two-dot microscopy
ROY4894/95	MATa YIPLac-HDEL-dsRED::NatMx HMR-GIT1-LacO(256x)::TRP Lacl-GFP::ADE2 RECR::LEU2 ura3 his3 rad51Δ::KanMx	Zone analysis
ROY4896/97	MATa YIPLac-HDEL-dsRED::NatMx HMR-GIT1-LacO(256x)::TRP LacI-GFP::ADE2 RECR::LEU2 ura3 his3 mre114::KanMx	Zone analysis
ROY4898/99	MATa/α HML-tetO::LEU2 HMR-LacO::TRP1 CFP-LacI tetR-YFP::ADE2 LYS2 rsc2Δ::KanMX	Two-dot microscopy
ROY4900/01	MATa/α HML-tetO::LEU2 HMR-LacO::TRP1 CFP-Lacl tetR-YFP::ADE2 isw2Δ::KanMx LYS	Two-dot microscopy
ROY4902/03	MATa HML-tetO::LEU2 HMR-LacO::TRP1 CFP-Lacl tetR-YFP::ADE2 mgmt1Δ::KanMX LYS	Two-dot microscopy
ROY4904/05	MATa HML+tetO::LEU2 HMR-LacO::TRP1 CFP-Lacl tetR-YFP::ADE2 uip54::KanMX LYS	Two-dot microscopy
ROY4906/07	MATα/a HML-tetO::LEU2 HMR-LacO::TRP1 CFP-Lacl tetR-YFP::ADE2 sin3Δ::KanMx	Two-dot microscopy
ROY4908/09	MATα/a HML-tetO::LEU2 HMR-LacO::TRP1 CFP-Lacl tetR-YFP::ADE2 htz1Δ::KanMx LYS	Two-dot microscopy
ROY4942/43	MAT α/a HML-tetO::LEU2 HMR-LacO::TRP1 CFP-Lacl tetR-YFP::ADE2 smc6-9::NatMx LYS	Two-dot microscopy
ROY4944	MAT α 5GEB-a1-B5G::HMR LYS	Silencing

All strains are isogenic to W303 except when noted with an asterisk.

Table S2. qPCR primers used in this study

Name	Sequence 5' \rightarrow 3'	Amplicon
GRO40	ATTTATTAATGTCAAAAGCCGCTGAGG	1
GRO39	TAAGACAATTGTGGACAACAAAGCAAA	1
GRO51	AAAACAACGCGTCATGAAAAAGAGTTA	2
GRO52	ATCACGTTCAACAAGGAACTCTACCAA	2
GRO49	TTATAAAATCCTCGCACTATCGCTGTT	3
GRO50	TGGGTTAGAGATTTGCAACTATTTTCTTC	3
LOU191	CCCGTCCAAGTTATGAGCTTAATC	4
L95	AAAACCAGGAGTACCTGCGCTTATTCT	4
L97	TAATACCTTTAAATGTTGAGGTAAATAGC	5
L98	GCTAAAGTGTGTGGAAAAACATTTTCTTGT	5
Lou201	CACCAATTCCGCATCTGCAGATTAC	6
L96	GGTAGAATGACCTAGAATGACCCATC	6
R197	GAGACCAGGTTTATTCAACCGGTAAC	7
Lou120	GGGTGTCACCGAATAACGTGAT	7
R189	ATCACGTTATTCGGTGACACCCAG	8
R190	GCCGTAAGAGATCTCCGAATAACGGTA	8
L108	TACCGTTATTCGGAGATCTCTTACGG	9
L109	GTGACGCACTGAATGTCATCAAAAG	9
R191	CTITTGATGACATTCAGTGCGTCAC	10
R192	ACCGGATATAGAAGAACTCGTCTTATG	10
L104	CATAAGACGAGTTCTTCTATATCCGGT	11
L107	CCTATTTGCGTATTCCTATGTTG	11
R193	CTAAGACGCTAGGACTTCTAAACACAGA	12
R194	ACCATATTGCTTAATTTCTTACTACTTG	12
GRO61	GAGTGTCCGCATGATTAATACTTTTCG	13
GRO62	ATATGAAGATAAATGTGGCACCAAACG	13
QJK33	TTGCAAATTGCTTGAACGGATGCCATT	А
QJK34	TACCGGATTAGAGGTTTGCTACTATATG	А
QJK45	AATTCACTACGTCAACATATCCCACG	В
QJK46	GAGGCCGTAGGGACATATAGCA	В
QJK35	GGCTGTACCATGTAAAATGAGCGG	С
QJK36	CCTITIGAGATICITCACCAATGTIGC	С
R225	GTACTTAGTATTTGGCCATTATTATCG	D
R226	TTACATTTCATTCTATGTGCGCTAGAT	D
R227	AGCTGAGTAACTAACTCTCATGGTACA	Е
R228	GAAGTAAGTTAACATAGAAGTCAAACAC	Е
QJK47	CTGCAGCATGTCCCCCTTTATACA	F
QJK48	GTGTAAGATTTCTCGAAGTAAGCATCAA	F
QJK51	CAAAACCGGCATTACCGCCAGAA	G
QJK52	AACCAAGTGGCTCCTTCAAAAGTAGA	G
QJK49	TCTGTTCGAGACAAGTTGAGCAAGG	Н
QIK50	CCAGCTCGTTCAACCTCAAAGTGA	Н
JK250	CTITCTCCACCACTGCTGAAAGAG	ACT1
JK252	GAAGAAGATTGAGCAGCGGTTTGC	ACT1
R219	GTTACGACGAAGCACGGCAAATTAG	ARS315
R220	AAAACGGTCCGCTAAGAGCCGGTA	AR\$315

Reference

Miele, A., K. Bystricky, and J. Dekker. 2009. Yeast silent mating type loci form heterochromatic clusters through silencer protein-dependent long-range interactions. *PLoS Genet.* 5:e1000478. http://dx.doi.org/10.1371/journal.pgen.1000478