

Fig. S1. Skeletal phenotype variability in *barx1* **mutant zebrafish.** (A-D) Zebrafish heterozygous for *barx1*^{/h330} and *barx1*^{/h331} alleles were crossed and offspring were stained with Alcian Blue and Alizarin Red, dissected and imaged with transmtted light. Genotyped trans-heterozygotes displayed *barx1*-associated phenotypes revealing that these two alleles fail to complement. Anterior is towards the left; left is upwards. (E-P) Alcian Blue- and Alizarin Red-stained larvae were dissected and flat mounts imaged to reveal the range of phenotypic severity found in *barx1* mutants. Anterior is towards the left; dorsal is upwards. Scale bar: 10 μm.

Movie 1. Joints afford the zebrafish cartilage skeleton flexibility. 4 dpf *sox9a:EGFP* transgenic zebrafish larvae were anesthetized and laterally mounted in 1.5% agarose in a glass-bottomed dish. Following removal of agarose from just the head, anesthetic was removed and larvae were allowed to recover for several minutes. Non-anesthetized larvae were imaged at six scans/second. In wild-type larvae, skeletal flexibility is evident at the jaw joint between Meckel's cartilage and the palatoquadrate. In *barx1* mutants, skeletal flexibility can be seen at the Meckel's joint, as well as the primary jaw joint. Anterior is towards the left; dorsal is upwards.

Movie 2. Subintermediate domain precursors give rise to cartilage in wild type and to joints in *barx1* mutants. *trps1:EGFP;hand2:Crimson* double-transgenic embryos were ventrally mounted and imaged by time lapse microscopy from 50 to 71.5 hpf. Movies are maximum confocal projections. Anterior is towards the left; left is upwards.

Movie 3. Cell rearrangement does not contribute to the *barx1* **mutant phenotype.** Individual confocal sections were compiled from Movie S2, allowing the tracking of isolated cells (arrows). Cells from similar locations differentiate into chondrocytes in wild types and *trps1:EGFP*-expressing joint cells in *barx1* mutants. *hand2:Crimson* fluorescence was imaged with high gain to image perduring protein even after reporter expression had probably been downregulated. Anterior is towards the left; left is upwards.

Movie 4. barx1 mutant zebrafish fail to downregulate hand2, and develop cartilage gaps in the lower jaw.

sox9a:EGFP;hand2:Crimson double transgenic embryos were ventrally mounted and imaged by time-lapse microscopy from 50 to 72.5 hpf. Movies are maximum confocal projections. Anterior is towards the left; left is upwards. Wild-type (WT) cells differentiating into chondrocytes of the lower jaw initiate expression of *sox9a:EGFP* (green), while downregulating expression of *hand2:Crimson* (red). By contrast, *barx1* mutants fail to downregulate *hand2:Crimson* and ectopic joints develop in the skeleton.

 Table S1. Arch 1 and 2 skeletal gaps in barx1 mutant zebrafish

barx1	% hm	% reduced	% mj (complete	% chj (complete	п
allele	notch	ptp	gap)	gap	
fh331	46	95	100 (33)	100(62)	176
fh330	56	98	100 (29)	100 (37)	52

Fixed 4 dpf Alcian Blue/Alizarin red-stained skeletons were scored on both sides for phenotypes. An obviously thin mc or ch was scored as an ectopic joint, the subset of these with a complete gap is shown in parentheses.

n, number of sides.

Genotype	% hm	%	% mi	% chi	%	% ih	n
othotype	notch	reduced	(complete	(complete	iaw	ioint	
		ntp	gan)	gan	ioint	loss	
		PP	Sup)	Sup	loss	1055	
<i>barx1</i> ^{+/+}	0	0	0 (0)	0 (0)	0	0	10
furina ^{+/+}	-	-	- (-)	- (-)		_	
barx1+/-	0	0	0 (0)	0 (0)	0	0	30
furina ^{+/+}							
barx1-/-	50	96	100 (60)	100(88)	0	0	48
furina ^{+/+}							
<i>barx1</i> ^{+/+}	0	0	0 (0)	0 (0)	0	0	36
furina ^{+/-}							
barx1 ^{+/-}	0	2	0 (0)	0 (0)	2	2	54
furina ^{+/-}							
barx1-/-	37	95	100 (48)	100 (87)	0	0	60
furina ^{+/-}							
barx1 ^{+/+}	2	7	0 (0)	0 (0)	72	69	54
furina ^{-/-}							
barx1 ^{+/-}	8	2	0 (0)	10 (6)	63	60	120
furina ^{-/-}							
barx1-/-	91	98	93 (38)	47 (22) *	33	3	58
furina ^{-/-}							

Table S2. Summary of arch 1 and 2 joints in *barx1; furina* compound mutant zebrafish

Fixed 4 dpf Alcian Blue/Alizarin Red-stained skeletons were scored on both sides for phenotypes. An obviously thin mc or ch was scored as an ectopic joint, the subset of these with a complete gap is shown in parentheses.

First arch joint-loss phenotype typical of *furina* mutants shown in bold.

n, number of sides.

*Severe loss of ventral arch two cartilage in some individuals precludes the detection of ch joint.

Genotype	% hm	% reduced	% mj	% jaw	п
	notch	ptp	(complete	joint loss	
			gap)		
$barx1^{+/+}$	0	0	0 (0)	0	32
hand2 ^{+//}					
barx1 ^{+/-}	0	3	3 (0)	0	68
hand2+/?					
barx1-'-	52	100	100 (24)	0	58
hand2 ^{+/?}					
<i>barx1</i> ^{+/+}	3	0	0 (0)	96	26
hand2-'-					
barx1 ^{+/-}	6	2	0 (0)	97	118
hand2-'-					
barx1 ^{-/-}	95	100	0 (0)	100	44
hand2-'-					

Table S3. Summary of arch 1 and 2 joints in *barx1;hand2* compound mutant zebrafish

Fixed 4 dpf Alcian Blue/Alizarin Red-stained skeletons were scored on both sides for phenotypes. An obviously thin mc or ch was scored as an ectopic joint, the subset of these with a complete gap is shown in parentheses.

n, number of sides.

The first arch joint-loss phenotype typical of hand2 mutants is shown in bold.