Deletion of the last five C-terminal amino acid residues of Connexin43 leads to lethal ventricular arrhythmias in mice without affecting coupling of gap junction channels

First author: Lübkemeier

Short title: Lethal cardiac arrhythmias in Cx43D378stop mice

Indra Lübkemeier¹, diploma biologist; Robert Pascal Requardt², PhD; Xianming Lin³, PhD; Philipp Sasse⁴, MD; René Andrié⁵, MD; Jan Wilko Schrickel⁵, MD; Halina Chkourko³, PhD; Feliksas F Bukauskas⁶, PhD; Jung-Sun Kim⁷, MD, PhD; Marina Frank¹, diploma biologist; Daniela Malan⁴, PhD; Jiong Zhang⁸, diploma biologist; Angela Wirth⁹, PhD; Radoslaw Dobrowolski¹⁰, Peter J Mohler¹¹, PhD; Stefan Offermanns⁹, MD; Bernd K Fleischmann⁴, MD; Mario Delmar³, MD, PhD and Klaus Willecke^{1§}, PhD.

¹ Life and Medical Sciences (LIMES) Institute, Molecular Genetics, University of Bonn, Bonn, Germany

² Jena University Hospital, Center for Sepsis Control and Care (CSCC), Jena, Germany

³ Leon H. Charney Division of Cardiology, New York University Medical School, New York, NY, USA

⁴ Institute of Physiology I, Life and Brain Center, University of Bonn, Bonn, Germany

⁵ Institute of Medicine Cardiology, University of Bonn, Bonn, Germany

⁶ Dominick P. Purpura Department of Neuroscience of Albert Einstein College of Medicine, NY, USA

⁷ Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea

⁸ Institute of Cellular Neurosciences, University of Bonn, Bonn, Germany

⁹ Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany

¹⁰ Department of Biological Sciences, Rutgers University, Newark, NJ, USA

¹¹ Departments of Internal Medicine and Physiology, Dorothy M. Davis Heart and Lung Research Institute, Ohio State University Medical Center, Columbus, OH, USA

* The senior authors contributed equally to this work.

[§] Corresponding author

Dr. Klaus Willecke LIMES-Institute Molecular Genetics University of Bonn Carl-Troll-Str. 31 53115 Bonn, Germany Phone: +49 228 7362743 Fax: +49 228 7362642 Email: k.willecke@uni-bonn.de

Online Resource 2:

Suppl. Fig. 1 Generation of conditional Cx43D378stop mice. a Homologous recombination of the conditional Cx43D378stop-vector with the genomic locus of the Cx43 gene leads to the recombined allele mCx43floxD378stop. Besides the 5' and 3' homologous regions the vector consists of a loxP (locus of crossing over P1) site flanked region containing the Cx43WT sequence, its 3' untranslated region and an inverted neomycin resistance cDNA driven by a PGK (phosphoglycerate kinase) promoter and flanked by frt (Flp recognition target) sites. Furthermore, the vector contains the mutated Cx43D378stop sequence followed by an IRES-eGFP construct. Cre-mediated recombination leads to the deletion of the Cx43WT sequence, its 3'untranslated region, neomycin resistance gene and results in the genotype mCx43D378stop. b Southern blot analysis with an internal probe on Bg/II digested heart DNA from different genotypes verified homologous recombination in Cx43floxD378stop mice. Detection of a 7.5 kb fragment indicates the Cx43 wild-type allele and a 3.9 kb as well as a 10.3 kb fragment the Cx43floxD378stop allele. c Northern blot analysis with an internal probe on total RNA from neonatal hearts of different genotypes verifies the transcriptional expression of the Cx43D378stop mutation after Cre-mediated recombination. Detection of a 3.1 kb fragment indicates the Cx43 wild-type mRNA and a 4.4 kb fragment the Cx43D378stop-IRES-eGFP bicistronic mRNA. d PCR genotyping of Cx43D378stop mice results in a 350 bp fragment for the Cx43 wildtype allele and a 400 bp fragment for the Cx43floxD378stop allele

Suppl. Fig. 2. Voltage gating of Cx43D378stop GJ channels. **a** Junctional current (I_j) in response to a transjunctional voltage (V_j) step of -95 mV, followed by repeated V_j ramps of small aplitude in a HeLaCx43D378stop cell pair. The insert shows that I_j does not decay substantially during ~0.5 s. This result supports the notion that the minor, short lasting differences in membrane potential between two neighboring myocytes during propagation cannot cause a substantial decay of junctional conductance (g_j). **b** Normalized g_j-V_j plot of Cx43D378stop channels (in black) averaged from four g_j-V_j plots measured using V_j ramps changing over 30 s from 0 to 105 mV. The data demonstrate that Cx43D378stop gap junctions are in fact less dependent on Vj than the wild-type control (grey line; from [1]). These results exclude the possibility that the enhanced arrhythmogenicity observed in Cx43D378stop hearts results from an enhanced dynamic reduction in junctional conductance [2] associated with the Vj gating of the channel.

Suppl. Fig. 3 Late sodium current densities recorded from adult cardiac myocytes isolated from Cx43D378stop mice. There is no change of late sodium current density in Cx43D378stop cells

Suppl. Fig. 4 Sodium current properties recorded from adult cardiac myocytes isolated from wild-type mice injected with tamoxifen. **a,b,c:** Average peak sodium current density as a function of voltage command, Voltage dependence of I_{Na} steady-state inactivation curves and Time course of I_{Na} recovery from inactivation. n=6 for each group (pNS)

Suppl. Fig. 5 Average I_{K1} current density as a function of voltage command. There is no difference of I_{K1} current densities at both -120 mV and -50 mV between Cx43D378stop and control cells. n=14 for control and 15 for Cx43D378stop

Suppl. Fig. 6 Transcriptional expression of the Na_V1.5 gene in adult Cx43D378stop hearts. Quantitative Real-Time-PCR analyses of Na_V1.5 expression revealed no significant differences between control and Cx43D378stop hearts. n=4 for both groups

Suppl. Fig. 7 Triton X-100 fractionation assay with Cx43 and Cx43D378stop stable expressing HeLa cells. Immuno blot analyses reveal presence of Cx43D378stop protein in both Triton-insoluble and Triton-soluble fractions. Similar to the Cx43 wild-type protein, the Cx43D378stop protein can be found in junctional and non-junctional connexin channels. n=3 for both groups

Suppl. Fig. 8 Quantification of ZO-1 and Nav1.5 protein expression in neonatal and adult Cx43D378stop hearts. Statistical analyses revealed no significant differences in the expression levels of ZO-1 and Nav1.5 protein between neonatal (**a**) or adult (**b**) control and Cx43D378stop hearts. n=3 for both groups

Suppl. Fig. 9 Localization of N-Cadherin and cardiac actin in the mutated Cx43D378stop adult heart. Immunological staining of N-Cadherin (green), cardiac actin (red) and nuclei (blue) in sections of control (**a**) and Cx43D378stop (**b**) hearts verifies localization of N-Cadherin at intercalated discs between ventricular cardiomyocytes (merged magnifications). Staining of cardiac actin reveals no obvious differences in cytoskeleton organization between control and Cx43D378stop hearts. n=4 for both groups. Bar: 20 µm

Suppl. Fig. 10 Co-immunoprecipitation analysis (Co-IP) of Cx43D378stop, ZO-1 and Na_v1.5 in adult hearts. **a** Immuno blots of pulled-downed fractions performed on lysates from control and Cx43D378stop hearts revealed immuno precipitation of wildtype and mutated Cx43D378stop protein by ZO-1 or Na_v1.5. After Co-IP, membranes were probed with polyclonal Cx43 antibodies (upper panel) and re-probed with polyclonal ZO-1 or Na_v1.5 antibodies (middle panel) to confirm immuno precipitation. As an input control, 80 μ g of flow-through lysate were probed with polyclonal Cx43 antibodies (lower panel). n=3 for both groups. **b** As a negative control, polyclonal rabbit IgG antibodies were used to pull-down fractions of control (left panel) and Cx43D378stop (right panel) lysates. Immunoblots with polyclonal Cx43 antibodies revealed no unspecific pull-down of Cx43 or Cx43D378stop protein by the IgG antibody-coupled beads. As an input control, 80 μ g of flow-through lysate were used.

References

- 1. Bukauskas FF, Bukauskiene A, Bennett MV, Verselis VK (2001) Gating properties of gap junction channels assembled from connexin43 and connexin43 fused with green fluorescent protein. Biophys J 81:137-152 doi:10.1016/S0006-3495(01)75687-1
- 2. Lin X, Gemel J, Beyer EC, Veenstra RD (2005) Dynamic model for ventricular junctional conductance during the cardiac action potential. Am J Physiol Heart Circ Physiol 288:H1113-1123 doi:10.1152/ajpheart.00882.2004

Suppl. Figs.

Suppl. Fig. 1

Suppl. Fig. 2

Suppl. Fig. 3

Suppl. Fig. 4

Suppl. Fig. 5

Suppl. Fig. 6

Suppl. Fig. 7

Suppl. Fig. 8

Suppl. Fig. 9

Suppl. Fig. 10

Suppl. Table 1 Parameters of heart rate, PQ interval and QRS amplitude of ECG recordings from fetal Cx43D378stop mice

	Heart rate (bpm)	PQ interval (msec)	QRS amplitude (µV)
Control	108 ± 13	94 ± 9	119 ± 40
Cx43D378stop	117 ± 22	107 ± 12	130 ± 75

Suppl. Table 2 Parameters of heart rate and PQ interval of ECG recordings from adult Cx43D378stop mice

	Heart rate (bpm)	PQ interval (msec)
Control	573 ± 23	40 ± 0.6
Cx43D378stop	558 ± 33	43 ± 4

	A ₁	t ₁	A ₂	t ₂	A ₀
Control	24 ± 3.3	57 ± 3.0	11 ± 0.9	1108 ± 97	6 ± 0.5
Cx43D378stop	16 ± 1.2*	62 ± 4.6	11 ± 1.6	1049 ± 56	5 ± 0.6

Suppl. Table 3 Fitting parameters of K_v currents at 40 mV recorded from Cx43D378stop cells

*P < 0.05.

Suppl. Table 4 Parame	ters of action potentials	recorded from Cx43D378stop cells
-----------------------	---------------------------	----------------------------------

	APD90 (msec)	APD70 (msec)	APD50 (msec)	RP (mV)	APA (mV)
Control	25 ± 4.5	5 ± 0.3	2 ± 0.1	-76 ± 0.5	124 ± 2
Cx43D378stop	26 ± 3.1	6 ± 0.3*	$3 \pm 0.2^{*}$	-78 ± 1	127 ± 2

*P < 0.05. n = 9 for control and 10 for Cx43D378stop.