
Additional Files 1: Supplementary Model

S1 Full Model

To fully describe the reactions in Figure 1 a system of nine time-dependent differential equa-

tions is needed. This system models the change in the concentrations of: 1) Gpa2·GTP (active

Gpa2); 2) Cdc25; 3) Ras·GTPase Ira1 and Ira2; 4) Ras·GTP (active Ras2); 5) Adenylate cyclase ac-

tivity; 6) activated Pde1; 7) activated Pde2; 8) cAMP; and 9) active PKA (free catalytic subunits).

The concentrations have units of fmol/(106 cells) and time has scale of minutes.

[Gpa2·GTP]
dg
dt

= Pg[Glu]− Dgg (S1)

[Cdc25∗]
dc
dt

= Pc − Dc[Stress]c (S2)

[Ira∗]
dz
dt

=
Rz(Cz − z)y

Γz ∑(z, p1, p2)
− Dzz (S3)

[Ras·GTP]
dr
dt

=
Rrc(Cr − r)
Γr + Cr − r

− R̄rzr
Γr + r

(S4)

[Adenylate cyclase]
da
dt

= (Pa + P̄agr)− Daa (S5)

[cAMP]
dx
dt

= Pxa −
(

Dxx +
Rx1 p1x
Γx1 + x

+
Rx2 p2x
Γx2 + x

)
− 4

(
Kbx4(Cy −

y
2
)− K f y3

)
(S6)

[Pde1∗]
dp1

dt
=

Rp1(Cp1 − p1)y
Γp1 ∑(z, p1, p2)

− Dp1 p1 (S7)

[Pde2∗]
dp2

dt
=

Rp2(Cp2 − p2)y
Γp2 ∑(z, p1, p2)

− Dp2 p2 (S8)

[PKA]
dy
dt

= 2
(

Kbx4(Cy −
y
2
)− K f y3

)
(S9)

Here the asterisk (∗) indicates the activated form of the enzyme. If an equation has two similar

reactions, we use a bar over the second parameter to indicate that this is a different parameter

but of a similar type to the first parameter.

The notation for the parameters is as follows: P is a production term at a rate independent

of the concentration of the enzyme being produced; D is a linear decay rate; K is a reaction

coefficient in a binary (or higher order) reaction; R is a reaction coefficient in a catalyzed reaction

(that is the Michaelis-Menten rate); C is a total concentration of an enzyme; and Γ is a Michaelis-
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Menten affinity. In Equations (S3), (S7) and (S8),

∑(c, p1, p2) = 1 +
Cz − z

Γz
+

Cp1 − p1

Γp1

+
Cp2 − p2

Γp2

To simplify (S3), (S7), and (S8), assume that the total concentrations of Ira, Pde1, and Pde2

(Cz, Cp1 , and Cp2) are always much greater than the active concentrations of Ira, Pde1, and Pde2.

Thus, we may approximate inactive Pde1 ([PDE1] in (1)) as Cp1 . We may also approximate

inactive Pde2 ([PDE2] in (2)) as Cp2 , and approximate inactive Ira ([Ira] in (3)) as Cz. That is

Cz − z ≈ Cz, Cp1 − p1 ≈ Cp1 , and Cp2 − p2 ≈ Cp2 in Equations (S3), (S7) and (S8).

S2 Simplification of the Full Model

As noted in Section 3.1, in order for the model to replicate the dynamics observed by Ma et

al. [35] (Fig. 2), the following three conditions are essential.

Condition (a) The following inequalities must hold:

Γp1 Cp2

Γp2 Cp1

<< 1 (S10)

Γp2 Cz

ΓzCp2

<< 1 (S11)

Condition (b) In comparing analogous reactions of Pde1 and Pde2, the reactions of Pde2 are

uniformly slower.

Condition (c) PKA rapidly phosphorylates Ira.

S2.1 Effect of Conditions (a), (b), and (c) on Equations (S3), (S7), and (S8)

Conditions (a), (b), and (c) simplify Equations (S3), (S7), and (S8), with results for Ma et al.

Cases 1–5 as follows.

Equation (S3): In Case 5, both forms of both Pde1 and Pde2 are zero; therefore Equation (S3)

can be rewritten as:
dz
dt

≈ Nzy − Dzz, (S12)

where

Nz =
RzCz

Γz + Cz
. (S13)
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When either Pde1 or Pde2 is nonzero:

RzCz

Γz + Cz +
Γz

Γp1
Cp1 +

Γz
Γp2

Cp2

≈ RzCz
Γp1
Γz

Cp1 +
Γp2
Γz

Cp2

= Ñz (S14)

We can make this approximation since the last two terms in the denominator are large, by

Condition (a). By Condition (c) we know Rz is also large so we can not approximate this term by

zero; therefore in Cases 1–4 Equation (S3) can be rewritten as:

dz
dt

≈ Ñzy − Dzz (S15)

where Ñz << Nz.

Equation (S7): To apply Condition (a) examine the non-linear terms in the denominator of:

Rp1 y
Γp1
Cp1

+ 1 +
Γp1 Cp2
Γp2 Cp1

+
Γp1 Cc
ΓcCp1

Inequalities (S10) and (S11) allow us to neglect the last two terms in the denominator. Thus in

Cases 1, 3, and 4 Equation (S7) simplifies to:

dp1

dt
≈ N1y − Dp1 p1, (S16)

where

N1 =
Rp1

Γp1
Cp1

+ 1
.

In Case 2 Pde1 is eliminated, so Equation (S7) is replaced by the trivial equation p1 ≡ 0.

Equation (S8): In Case 2, Pde1 has been eliminated (p1 ≡ 0), and as above Inequalities (S10)

and (S11) allow us to neglect the last term in the denominator of Equation (S8). Thus Equation

(S8) simplifies to:
dp2

dt
≈ N2y − Dp2 p2, (S17)

where

N2 =
Rp2

Γp2
Cp2

+ 1
.

In all other Cases Equation (S8) is replaced by the trivial equation p2 ≡ 0. In Cases 1 and 4

this is because Pde1 is nonzero, so by Inequality (S10) the denominator is very large, and by

Condition (b) the numerator is small, thus we can approximate the whole expression as zero. In

Cases 3 and 5 this is because Pde2 has been knocked out.
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S2.2 Effect of Condition (b) on Equation (S17)

Condition (b) is imposed to fit Cases 2 and 4 in the data reported by Ma et al. [35]. The

slower activation of Pde2 is responsible for the larger transient response observed in these two

cases (Figure 2). Applying this condition we can define a non-dimensional parameter

M =
Dp2

Dp1

, (S18)

such that the value of M must be much less than one (M ≪ 1). Changing the units of Pde2 if

necessary, we can arrange that

N2 = MN1. (S19)

Note that in every case at least one form of Pde has been eliminated. Since we have expressed

the parameters in Equation (S17) as a constant multiple of the parameters in Equation (S16), we

can express both as one equation:

dp
dt

= M(N1y − D1 p). (S20)

In Cases 1 and 3 the variable p represents Pde1 and the parameter M takes the value 1. In Case 2

the variable p represents Pde2 and the parameter M is given by Equation (S18), which is much

less than 1. In Case 4 the variable p is again Pde1 but now parameter M is reduced to 0.2 since in

this case the Pde1 mutant is slow activating. Of course in Case 5, the p-equation is not needed.

S2.3 Steady State Assumptions

The model may be further simplified by assuming that the following four reactions are fast

and hence proceed to steady state.

1. Gpa2·GDP −⇀↽− Gpa2·GTP (reaction 1 in Figure 1).

2. Activation/inactivation of Cdc25 (reaction 2 in Figure 1).

3. Activation/inactivation of adenylate cyclase (reaction 5 in Figure 1).

4. cAMP+[Bcy1::PKA] −⇀↽− [cAMP::Bcy1] +PKA (reaction 9 in Figure 1).

Let us discuss the steady-state assumptions for each of these four reactions.
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Gpa2·GDP −−⇀↽−− Gpa2·GTP at steady state Gpa2·GTP is independent of all other variables, thus at

steady state Gpa2·GTP is only a function of the glucose available to the cell:

g =
Pg

Dg
[Glu]. (S21)

Activation/inactivation of Cdc25 at steady state Cdc25 is independent of all other variables, thus

at steady state Cdc25 is only a function of the stress on the:

c =
Pc

Dc[Stress]
(S22)

Thus stress inhibits the activity of Cdc25.

Activation/inactivation of adenylate cyclase at steady state

Applying this steady state assumption to (S5) we get that the steady state value of adenylate

cyclase is:

a =
Pa

Da
+

P̄aPg

DaDg
[Glu]r (S23)

cAMP+[Bcy1::PKA] −−⇀↽−− [cAMP::Bcy1] +PKA at steady state In Equation (S9) we model this

reaction as:
dy
dt

= 2
(

Kbx4(Cy −
y
2
)− K f y3

)
The reaction modeled here is: 4 cAMP bind to a single PKA unit, which is made up of two

catalytic subunits (Tpk1, Tpk2, or Tpk3) and two regulatory subunits (Bcy1). cAMP binds to

the regulatory subunits and releases the catalytic subunits creating the active form of PKA. We

can simplify this reaction in two ways, first by assuming that the concentration of PKAdoes not

approach its max (Cy − y
2 ≈ Cy), and second that we can approximate the 4 to 2 by a 2 to 1

reaction. This simplifies (S9) to:
dy
dt

= 2(Kbx2 − K f y)

Although we know from Garmendia-Torres et al. [42] that this reaction (reaction 15 in Figure 1) is

not faster than the other reactions in the system, we nevertheless make the simplest assumption

consistent with the Ma et al. [35] data. Thus we assume that the activation/inactivation of PKA

proceeds to steady state. We can then express the concentration of PKA (y) in terms of the

concentration of cAMP (x):
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y =
Kb

K f
x2

Of course models in which the reaction cAMP+[Bcy1::PKA] −⇀↽− [cAMP::Bcy1] +PKA is not at

steady state could fit the data of Ma et al. as well as our model or better. However, allowing this

additional flexibility would lead to even more parameters needing to be chosen in the absence of

sufficient data.

S3 Nondimensionalization

We seek to rescale our model in a way that is consistent in both the short term and long term.

Conditions (a), (b) and (c) along with steady-state assumptions allow us to reduce Equations

(S1)–(S9) to the following system:

dr
dt

=
Rr

Pc
Dc[Stress] (Cr − r)

Γr + Cr − r
− R̄rzr

Γr + r
(S24a)

dz
dt

= Nz
Kb

K f
x2 − Dzz (S24b)

dp
dt

= M(N1
Kb

K f
x2 − D1 p) (S24c)

dx
dt

= Px
Pa

Da
+ P̄x

P̄aPg

DaDg
[Glu]r − Dxx − Rx px

Γx + x
(S24d)

In Equations (S24a)–(S24d) the variable p is the concentration of Pde1 in Cases 1, 3, and 4 (wt,

pde2∆, and pde1ala152) and the concentration of Pde2 in Case 2; in Cases 1–4 parameter Nz is

defined by (S13), and in Case 5 parameter Nz is defined by (S14); x is the concentration of cAMP;

r is the concentration of Ras·GTP; and z is the concentration of Ira1 and Ira2; .

For convenance we rewrite these equations, the new parameters are now in bold.

dr
dt

=
Rr(Cr − r)
Γr + Cr − r

− R̄rzr
Γr + r

(S25a)

dz
dt

= Pzx2 − Dzz (S25b)

dp
dt

= Ppx2 − Dp p (S25c)

dx
dt

= Px + P̄xr − Dxx − Rx px
Γx + x

(S25d)

To analyze (S25a)–(S25d), we introduce the following non-dimensional variables:
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First re-scale such that r̄ =
r
R

, z̄ =
z
Z

, p̄ =
p
P

,x̄ =
x
X

, and t̄ =
t
T

with the following

parameters:

R = Cr Z =
CrDpP̄xPz

RxDzPp
P =

CrP̄x

Rx

X =

√
CrDpP̄x

RxPp
T =

√
Dp

RxPpP̄xCr

This scaling of variables yields the following non-dimensional parameters:

A =

√
DpRr

C3/2
r

√
RxPpP̄x

B =
D3/2

p R̄rPz
√

P̄x
√

CrR3/2
x DzP3/2

p
Γ1 =

Γr

Cr

N = Dz

√
Dp

CrRxPpP̄x
M = Dp

√
Dp

CrRxPpP̄x
C =

Px

CrP̄x

D0 = Dx

√
Dp

CrRxPpP̄x
Γ =

Γx
√

RxPp√
CrDpP̄x

We rewrite (S25a)–(S25d) in nondimensional form as:

dr
dt

=
A(1 − r)

Γ1 + 1 − r
− Bzr

Γ1 + r
(S26a)

dz
dt

= N(x2 − z) (S26b)

dp
dt

= M(x2 − p) (S26c)

dx
dt

= C + r − D0x − Dpx
Γ + x

(S26d)

S4 Model Fitting

The parameters used to fit the dimensional model are listed in Table 1. In choosing dimen-

sional parameters we used parameters given by Garmendia-Torres et al. [42] when available.

The units have been converted from µM to fmol/(106 cells) using the approximation that the

volume of a haploid cell is 42 fl while that of a diploid cell is 82 fl [63]. The haploid cell volume

was used to fit the data reported by Ma et al., while the diploid cell volume was used to fit the

experiemnts involving Σ1278b and S288c that we report here. Since the parameters of our model

are non-dimensional this difference in cell volumes affected the scaling of the variables. When

7



fitting the Ma et al. data we scaled the concentration of cAMP by 24.95 fmol · 10−6 cells. For the

diploid data we scaled by 48.71 fmol · 10−6 cells.

The parameters not chosen from Garmendia-Torres et al. are: D1,Px, Dx Rx1 , Rx2 , Γx2 and

M. Parameters D1, Px and Rx1 are fit to the Ma et al. wild type data, using a method of least

squares. We used the Fortran subroutine lmdif.f as implemented in the MINPACK library [62].

This subroutine minimizes the sum of the squares of m nonlinear functions in n variables by a

modification of the Levenberg-Marquardt algorithm. We created a subroutine which calculates

the functions that are used by this algorithm. The Jacobian is then calculated by a forward-

difference approximation.

Since Pde2 has higher affinity for cAMP than Pde1, the value of Γx2 is half the value of Γx1.

Paramters Rx2 and M where chosen to fit the Pde1 knockout case as described by Ma et al. again

using a method of least squares. Finally the value of Dx was chosen to fit the steady-state value

of cAMP in the double Pde knockout case.

[Table 1 about here.]

S5 Long-Term Dynamics

We explore the possible long-term dynamics of cAMP by examining the full four by four

system:

dr
dt

=
A(1 − r)

Γ1 + 1 − r
− Bzr

Γ1 + r
(S27a)

dz
dt

= N(x2 − z) (S27b)

dp
dt

= M(x2 − p) (S27c)

dx
dt

= C + r − D0x − Dpx
Γ + x

(S27d)

Claim 1. Equations (S27a)–(S27d) have a unique positive equilibrium point for 0 < r < 1.

Proof. To prove this, we will set Equations (S27a)–(S27d) equal to zero and show that in the range

0 < r < 1 there exists a unique positive solution (rss, zss, pss, xss). By setting Equations (S27b)

and (S27c) equal to zero we can express variables p and z in terms of the x:

z = p = x2.
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Substituting p = x2 into Equation (S27d) and setting this equation equal to zero, we can solve for

variable r in terms of x:

r =
1
G

(
D0x +

Dx3

Γ + x
− C

)
. (S28)

Substituting this expression for r in terms of x, and z = x2 into Equation (S27a) and setting

this equation equal to zero we reduce the four-by-four system to a single equation that we can

solve for in terms of x. For convenience of notation define f (x) as given by Equation (S28), then

Equation (S27a) set equal to zero becomes:

0 =
A(1 − f (x))

Γ1 + 1 − f (x)
− Bx2 f (x)

Γ1 + f (x)
. (S29)

Then, we need to show that there exists a unique solution to Equation (S29). To do this we

first examine the behavior of f (x). Observe that f (x), given by Equation (S28), is a continuous,

monotonically increasing function for x greater than zero. Since

f (0) = −C
G

and f (x) → ∞ as x → ∞,

there exists unique positive real points x0 and x1 such that f (x0) = 0 and f (x1) = 1.

Then to solve Equation (S29) define

h(x) =
A(1 − f (x))

Γ1 + 1 − f (x)
and g(x) =

Bx2 f (x)
Γ1 + f (x)

and show that there is a unique solution to

h(x) = g(x) for x0 < x < x1.

Observe that

h(x0) =
A

Γ1 + 1
> 0, h(x1) = 0,

and

h′(x) =
−AΓ1 f ′(x)

(Γ1 + 1 − f (x))2 < 0 for x0 < x < x1.

Thus, h(x) is a continuous, monotonically decreasing function for x0 < x < x1.

Observe that

g(x0) = 0, g(x1) > 0,

and

g′(x) =
Γ1(2Bx f (x) + Bx2 f ′(x)) + 2Bx( f (x))2

(Γ1 + f (x))2 > 0 for x0 < x < x1.
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Thus, g(x) is a continuous, monotonically increasing function for x0 < x < x1.

Therefore, there exists a unique solution xss to h(x) = g(x) such that x0 < xss < x1. Then the

unique positive equilibrium point of Equations (S27a)–(S27d), implicitly defined in terms of xss,

is ( f (xss), x2
ss, x2

ss, xss). Since 0 < f (xss) < 1 the equilibrium value of variable r is restricted to the

range 0 < r < 1.

Then using this outline, we can numerically find our equilibrium point for any parameter

choice.

Next we want to look at the stability of this equilibrium point. To do so we examine the

Jacobian Matrix at the equilibrium point:

J =


− Γ1 A

(Γ1+1−rss)2 − Γ1Bx2
ss

(Γ1+rss)2 − Brss
Γ1+rss

0 0
0 −N 0 2Nxss

0 0 −M 2Mxss

1 0 − Dxss
Γ+xss

−D0 − ΓDx2
ss

(Γ+xss)2

 . (S30)

Claim 2. In the special case of M = N Equations (S27a)–(S27d) pass through a Hopf Bifurcation when

Brss

Γ1 + rss
=

(a2 + aTr + Det)Tr
2xss M

(S31)

where rss and xss are the steady state values of Ras·GTP and cAMP,

a =
Γ1A

(Γ1 + 1 − rss)2 +
Γ1Bx2

ss
(Γ1 + rss)2 Tr = M + D0 +

ΓDx2
ss

(Γ + xss)2

Det = M(D0 +
ΓDx2

ss
(Γ + xss)2 + 2

Dx2
ss

Γ + xss
)

that is Tr is the absolute value of the Trace of the two by two matrix determined by Pde and cAMP, and

Det is the determinant of the same matrix.

Proof. We will just outline the proof here. Let:

a =
Γ1 A

(Γ1 + 1 − rss)2 +
Γ1Bx2

ss
(Γ1 + rss)2 b =

Brss

Γ1 + rss

d1 =
Dxss

Γ + xss
d2 = D0 +

ΓDx2
ss

(Γ + xss)2
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then we rewrite the Jacobian Matrix as:

J =


−a −b 0 0
0 −M 0 2Mxss

0 0 −M 2Mxss

1 0 −d1 −d2

 .

The characteristic polynomial of this matrix has the following form:

(λ + M)
(
(λ + a)(λ2 + (M + d2)λ + M(d2 + 2xssd1) + 2bxss M)

)
= 0

Then the first eigenvalue is λ = −M. We then used Mathematica to solve the remaining cubic.

We find that the eigenvalues pass through a Hopf Bifurcation when:

b =
Tr(a2 + aTr + det)

2xss M

by solving for when the eigenvalues are complex with zero real part.

S6 Short-Term Dynamics

In either extream case of rss ≈ 1 (Ras almost completely active -in GTP form) or rss ≈ 0 (Ras

almost completely inactive -in GDP form) we can assume that variable r is at steady state and

reduce the four–by–four system to the following two–by–two system:

dp
dt

= M(x2 − p) (S32a)

dx
dt

= C0 − D0x − Dpx
Γ + x

. (S32b)

where C0 = C + G when rss ≈ 1 (Ras is almost completely active) and C0 = C when rss ≈ 0 (Ras

is almost completely inactive). Since these two cases vary only by the value of parameter C0 we

analyze the behavior of both cases simultaneously.

Claim 1. Solutions of Equations (S32a) and (S32b) exhibit an oscillatory approach to equilibrium if and

only if

(
M − D0 −

ΓDx2
ss

(Γ + xss)2

)2

< 8M
Dx2

ss
Γ + xss

. (S33)

where xss is the equilibrium solution of (S32a, S32b); i.e.,

C0 − D0xss −
Dx3

ss
Γ + xss

= 0. (S34)
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Proof. To determine the parameter range for which (S32a) and (S32b) exhibit decaying oscilla-

tions, we examine the Jacobian matrix (S35) determined by (S32a) and (S32b) evaluated at the

equilibrium point:

J =

(
−M 2Mxss

− Dxss
Γ+xss

−D0 − ΓDx2
ss

(Γ+xss)2

)
. (S35)

When (S35) has complex eigenvalues with negative real part, then the system will exhibit

decaying oscillations as it approaches the equilibrium. The trace and determinant of our Jacobian

matrix are:

Trace(J) = −M − D0 −
ΓDx2

ss
(Γ + xss)2 (S36)

det(J) = M(D0 +
ΓDx2

ss
(Γ + xss)2 +

2Dx2
ss

Γ + xss
) (S37)

A two-by-two matrix has complex eigenvalues when

Trace(J)2 < 4 det(J).

Thus using (S36) and (S37), we can state that (S32a) and (S32b) exhibit decaying oscillations

when:

(
M + D0 +

ΓDx2
ss

(Γ + xss)2

)2

< 4M
(

D0 +
ΓDx2

ss
(Γ + xss)2 + 2

Dx2
ss

Γ + xss

)
. (S38)

We can simplify (S38) by subtracting 4M(D0 +
ΓDx2

ss
(Γ+xss)2 ) from both sides. The left hand side

remains a complete square, and we can rewrite (S38) as(
M − D0 −

ΓDx2
ss

(Γ + xss)2

)2

< 8M
Dx2

ss
Γ + xss

.
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Tables

Parameter Value Unit Description

Rr 240 (min)−1 activation rate of Ras·GTP due to Cdc25
R̄r 120 (min)−1 inactivation rate of Ras·GTP due to Ira
Cr 1050 fmol/(106 cells) total concentration of Ras
Γr .42 fmol/(106 cells) affinity of Cdc25 and Ira for Ras
Pc 168 fmol/(106 cells)(min)−1 activation rate of Cdc25
Dc 1 (min)−1 basal inactivation rate of Cdc25
Pz .7 (min)−1 activation rate of Ira due to PKA
Dz .86 (min)−1 inactivation rate of Ira
Pa 1.25 fmol/(106 cells) (min)−1 basal activation rate of AC
P̄a .027 (min)−1 enhanced activation rate of AC
Da 1 (min)−1 inactivation rate of AC
Rp1 2 (min)−1 activation rate of Pde1 due to PKA
DP1 .25 (min)−1 inactivation rate of Pde1
Kb .007 (min fmol/(106 cells))−1 rate at which cAMP binds to PKA
K f 3 (min)−1 rate at which cAMP is released from PKA
M .047 – ratio between the inactivation rates of Pde1 and Pde2
Px 23.3 (min)−1 production rate of cAMP due to AC
Dx .34 (min)−1 basal decay rate of cAMP
Rx1 56.8 (min)−1 decay rate of cAMP due to active Pde1
Γx1 840 fmol/(106 cells) affinity of Pde1 for cAMP
Rx2 14.7 (min)−1 decay rate of cAMP due to active Pde2
Γx2 420 fmol/(106 cells) affinity of Pde2 for cAMP

Table 1: Parameter values used to fit (S24a)–(S24b) to the data from Ma et al. [35]. Parameter in
bold are parameters that are fit to the Ma et al. datat using a method of least-squares. Parameters
Px, D1 and Rx1 were fit the the wild-type, parameters Rx2 and M were fit to the Pde1 knockout
case, and Dx was determined to fit the double Pde knockout case. The reminin parameters were
taken from Garmendia-Torres et al.
[42]
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