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Hidden Markov-Model to Recover Mosaic Recombination

Model construction

We combine two previous probabilistic models for sequence evolution; the pair-HMM
used to model pairwise sequence alignments (described in Durbin et al. 1998) and the model
of Li and Stephens (2003) used to model the effect of recombination on haplotype diversity.
We calculate the probability of observing a target sequence (conditional on specified values
of transition and emission parameters) by assuming that the target is an imperfect mosaic
of the other sequences in the sample allowing for insertion and deletion events. It is most
straight forward to describe the model in terms of simulation. Consider a set of n source
sequences. The target sequence is generated as follows:

Choose the starting point of the novel sequence uniformly from all sites in the source
sequences.

With probability m,; the novel sequence starts in a match state. With probability I
the novel sequence starts in an insert state.

The novel sequence is constructed by sampling from a Markov chain that explores
match, insert and delete states as in a typical pair-HMM.

If the novel sequence is in a match state an emission matrix is used to sample the state
conditional on the state of the source sequence at that position.

If the novel sequence is in an insert state, the state is sampled from the stationary
distribution of the emission matrix.

At each step there is some probability of jumping, through recombination, to any other
position on any other sequence (to either a match or insert state). As with initiation,
the destination of the recombination event is chosen uniformly among all sites in the
source sequences.

At each step there is some probability of terminating.



Note that while the model lacks biological realism because of the ability to jump from any
place to any other through recombination, this feature enables efficient inference through
dynamic programming and importantly does not require sequences to be aligned prior to
analysis, a property that is extremely important for a gene family as diverse as the var
genes. For each sequence in turn, we calculate the likelihood of the model parameters. Pa-
rameter estimation is performed using a composite likelihood obtained by multiplying the
likelihoods for each sequence in turn. We now given formal descriptions of the Viterbi, for-
ward and backward algorithms used to calculate likelihoods.

Model Construction: Notation

Table 1 covers some of the common notation used from this point onwards. Important
points to note from this notation include the following:

e The target sequence is represented as x, and the destination sequence as y.

e The emission probability is written as e(x;,y;) where z; is the amino acid at site ¢ in
sequence z and y; is the amino acid at site j in sequence y. Similarly, the probability
of observing a given amino acid emitted from an Insert state is written as e(z;).

e For clarity we write z as encompassing Match and Insert states.

Meaning

Number of sequences in sample

Target sequence

Specific instance of destination sequence, so that y € {1...h}
Index for position in target sequence x

Index for position in destination sequence y
Index for destination sequence so that k € {1...n}
Length of destination sequence

Length of target sequence

All lengths of all sequences so that w € {1...[;}
Sequence set

Transition probability

State where a transition originates

State where a transition ends

Emission probability

Match and Insert states so that z € {M;I}.

Two other states, B and T represent Begin and Termination states.
vi(i,j) | Example notation:

v Algorithm identity;

k Destination sequence identity;

q State identity;

1,7 Positions along respective sequences.
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Table S1. Notation used in the HMM equations. Thus includes an example notation format
of the kind used in the following algorithm explanations.



Model Construction: Transition Matrix

The pair-HMM with recombination used here is described by the following transition
matrix (which defines all transition probabilities of moving from state to state). Each row
of the matrix must sum to one. The i, jth entry of the N by N transition matrix (where N
is the number of states) is the probability of a transition from state i to state j.

For clarity, the matrix below denotes movements in a 3 sequence state where the subscript
"x” represents the target sequence and ”k” denotes any other destination sequence in the
dataset.

B |0 7|r7M| |7r7’| 0 % |7r71| 0 0
M, 0 1—-20—p—7 ) 0 %WM ﬁm 0
I, |0 1—e—p-—1 € 0 ﬁﬂM ﬁm 0 T
D, |0 1—c¢ 0 € 0 0 0 O
M, | 0 D’;‘WM ﬁm 0 1-20—p—7 ) o T
I, |0 M ﬁm 0 l—e—p-—1 € 0 7
D, | 0 0 0 0 1—c¢ 0 e O
T |0 0 0 0 0 0 0 1

Here, § is the probability of gap (indel) initiation, € is the probability of gap (indel) exten-
sion, p is the probability of recombination, | Y | is > ,_, Iy where [, = length of sequence k,
my 1s the stationary probability of starting in match state, 7; is the stationary probability
of starting in insert state, 7 is the probability of termination, and n is the n number of
destination sequences.

Viterbi algorithm

The Viterbi algorithm finds the most probable (maximum likelihood) path through the HMM
given the sequence set h . By doing so it finds the best alignment, as it finds the path 7
that maximizes the joint probability P(x|h,m, M). Following common dynamic program-
ming techniques, the best alignment is found by keeping pointers during the recursion and
tracing back, adding residues emitted by the HMM and the destination sequence identity
to the alignment. While the Viterbi can produce a quantity which, when used with the full
probability of the model, can indicate how correct the most probable path is, the main use of
the Viterbi here arises from the optimal alignment pathway produced through the sequence
set.

Initialization
M I ..D

vy, Vg, Uy are m + 2 by [ + 2 matrices.

v (0,7) = o' (i,0) = o (m + 1,j) = o' (i, + 1) = 0



vi(0,5) = v (4, 0) = vi(m + 1, 5) = vg(i, I + 1) = 0

v (0,7) = v (1,0) = v/ (m + 1,j) = v (i, Lk + 1) = 0

except for

Uljcw(lﬂj) = %dxlayj)

and

vlﬁ(Lj) = |7r7[|6(x1)

Recurrence

For 1 =1,..m,j =1,... 1 except vP(m,-):

v,iw(i,j) = e(x;, yj) - max

ol(i,5) = elxi, ;) - max

vl (i,§) = max

Termination

(1=20—p—T)l(i—1,j—1)
l—e—p—7)i(i—1,7-1)
(L —€vpi—1,j-1)

A TM maxy ;. v (i — 1, )
\
(1=25—p—7)o}l(i—1,j—1)
(I—e—p—T)yp(i—1,j—1)
(1 —evp(i—1,j—1)

[ Tm maxy i v (i — 1, )

Y
\

supt (i —1,5)

v = 7 max{vi(1, )}
7372



Forward Algorithm

The forward probability is the probability that the HMM generates a particular sequence of
observations.

P(z|h) =) P(z|m)P(x). (2)

This is equivalent to the product of the probability of the target sequence given a path
and the probability of that path, summed over all possible paths through the HMM. This
has many uses, such as the derivation of posterior probabilities according to any alignment,
and the calculation of a composite likelihood over all targets x in the sequence set h . This
composite likelihood is used in maximum likelihood estimation.

Initialization

M FE fP are m + 2 by I, + 2 matrices.
f}i\/[(OJ) = fé\/‘[(Z,O) = fliv[(m_'_ 17j) = fliw(i?lk + 1) =0
flg(ovj) = flg(%o) = f]i(m + 17j) = flg(lvlk‘ + 1) =0

£200,5) = £20,0) = fP(m+1,5) = £ (i, ln +1) = 0

except for

fif(1,5) = T¥e(z1,y5)

and

FL(L,4) = Ehe(a)

Recurrence

Fori=1,---,m,j=1,--- I except v2(m,-):



Termaination

fi' (6, g) =e(wi,yy)[fi" (i = 1,7 = 1) (1 =26 — p— 7)
+hl—1Lj-D0—e—p—1)

+fii=1,5- 1)1 —¢)

+‘—§i|wzzzf;<z‘—1,j>]

k=1 j=1 =z

fi(i,g) =e(x)[fi (i — 1,5)6

‘f‘flg(@ —1)e

fk;D(Zvj) :fliw(Z?] - 1) +ka<Z7] - 1)6

f:TZZZfI:(m’)

k=1 j=1 =z

Backward Algorithm

The backward algorithm is analogous to the forward algorithm but moving in the reverse
direction through the algorithm. Thus b{(i, j) is the probability of the partial observed se-
quence from k, 7, j to the end of the sequences, given state ¢q at the point k, 7, j and the model

M .

The backward algorithm is used both in the analysis of posterior probabilities and in
parameter estimation. Additionally, Equation 4 can be checked against Equation 3 to test
for programming errors as their solutions are identical.

Initialization

b bE bP are m + 2 by [ + 2 matrices.



b (0,5) = b (1,0) = b (m +1,5) = b (4, ls +1) = 0
bi(0,5) = bi(i,0) = bi(m +1,5) = bi(i, I, +1) = 0

b (0,5) = b (1,0) = b (m + 1,7) = b7 (i, le + 1) = 0

except for
b (m, 1) = b (m,ly) =T
Recurrence

Fori=m,...,1,j =1, ..., 1 except bP(m,-):

b%(%]) :bi\/l(z + 17.] + 1)<1 — 20 — p— T>€(xi+17 ijrl)
+ by (i +1,j)6e(xi11)

+ b2 (i, +1)0

|Y |7TMZZZ)M (i + 1, 5)e(@is1, Yj41)

k=1 j=1

lezbi (i +1,7)e(ri1)

k=1 j5=1

bi(i,5) =bp(i + 1, 7)ee(is1)
+ 0 (i 4+ 1,5+ 1) (1 —e—p—T)e(Tir1, jj+1)

| 5 | ZZWMbk (i +1,5)e(@ir1, yje1) + Tbp (i + 1, j)e(isn)

k=1 j=1

by (i,7) =by (i, 7 + 1)(1 — €)e(Tis1, Yj41)

Termaination



n

=1 j=1

Data analysis

Data analysis proceeds in two parts. Initially, with the recombination parameter set to zero,
the transition and emission probabilities are estimated by EM using the Baum-Welch algo-
rithm (note that it is the composite-likelihood is maximized). These parameters are then
fixed and a likelihood surface is constructed for the recombination parameter. Once the MLE
for the recombination parameter is found, the Viterbi path is constructed for each target se-
quence in turn. This path is used to provide the mosaic alignments summarized in the figures.

Algorithm performance

Sitmulation protocol

Our approach is to model the phenomenon of mosaicism observed in present day sequences
rather than the process of gene-family evolution itself. To explore the behavior of the model
fully, however, it is highly useful to be able to test the model upon datasets wherein factors
such as phylogenies and parameters are already known, a situation that normally requires
a model for var gene evolution. We do not attempt to fully model the complexity of the
var sequences, however. Instead, different simulation approaches are used with an aim to
capturing key features of var gene evolution and allowing us to test the robustness of the
model. T'wo simulation approaches are used:

e The coalescent with recombination (Hudson 2002), along with a model of complex
sequence evolution with site-specific substitution rates (Rambaut and Grassly 1997).
Recombinant phylogenies were generated which represent data partitioned into differ-
ing phylogenetic histories. These were simulated using the coalescent with different
crossover and gene conversion parameter values and assuming a neutral model with
homologous recombination. Those partitioned phylogenies were then used to simulate
amino acid sequences with recombinant histories, and the sequences were evolved using
the BLOSUMG62 substitution matrix and a site-specific substitution rate heterogeneity
which was gamma-distributed with a parameter of 1 (Rambaut and Grassly 1997).

e Indel formation in sequence families without recombination. To simulate sequences
that represent gene families containing highly related motifs, families of related se-
quences from a common ancestor sequence were simulated through a process of in-
sertion, deletion and substitution of characters without recombination (Rambaut and
Grassly 1997).

Although it would be useful to combine both features of recombination and indel forma-
tion, no program currently exists for this kind of joint simulation for amino acid datasets. The
above protocol instead allows the investigation of particular features of var gene sequences.



For instance, the simulation of sequences which contain indels and sequence motifs in the
presence of no recombination is useful because these features are a potential confounding
factor for estimating recombination.

Program | Parameter Value

Seq-Gen | Model of substitution BLOSUMG62

Seq-Gen | Site specific rate heterogeneity ~v-distributed, shape parameter 1
ms r (Crossover rate) 0, 1, 10, 50

ms g (Gene conversion rate) 1, 10, 50

ms Average tract length of gene conversion | 20

Rose Model of substitution PAM

Rose Probability of insertion of certain length | 0.00005

Rose Probability of deletion of certain length | 0.00005

Table S2. Values used in simulation programs

Another useful aspect of this simulation protocol is that it allows the recombination pa-
rameter used in our model to be related to the recombination parameter of the coalescent
process using a calibration method described below. This calibration, performed on simu-
lation results, is highly accurate allowing us to make comparisons between the p parameter
and recombination parameters in coalescent models.

It is important to note that the coalescent is likely to be an inaccurate description of true
var gene evolution. However, aspects of the coalescent represent several features of var gene
family evolution because basic coalescent processes of coancestry and allelic recombination
may represent var gene duplications and nonallelic recombination. It is also possible to
model gene conversion through the coalescent (Wiuf and Hein 2000) a feature which is often
highly important in the evolution of gene families (Ohta 1983).

Input parameters for these programs as listed in Table S2 were used to produce 60 sim-
ulated sequences with length of 150 sites.

Estimated values of transition probabilities

Parameter estimation was investigated with respect to recombination in terms of both
gene conversion events and crossover events. Increases of the simulated crossover rate moved
from r = 1 to r = 50, and increases of the simulated gene conversion rate moved from g
=1 to g = 50. A neutral dataset with no indel formation, crossover or gene conversion is
also simulated (r = 0, g = 0), as well as a dataset with no recombination processes but with
indel formations (indels). These simulated datasets can thus be summarized as follows:

e 7 =0, g = 0: no crossover, conversion or indel formation processes

indels: no recombination processes, high indel formation rate

r = 1. low crossover rate

g = 1: low conversion rate



e r = 10: moderate crossover rate
e g = 10: moderate conversion rate
e r = 50: high crossover rate

e g = 50: high conversion rate

The procedure for parameter estimation detailed above was followed for 10 simulated
datasets in each of these categories. Baum Welch estimation of § and € with p = 0 usually
led to parameters stabilizing within 5-10 iterations. The p parameter was then changed by
0.0001 per iteration in a grid search of the likelihood space for the maximum value. Results
in the form of average values can be found in Table S3, and the distributions of these values
can be seen in Figures S1, S2, and S3.

It can be seen (Figure S1) that the gap initiation parameter ¢ is highly sensitive to the
existence of indels in a dataset, but is also sensitive to the presence of gene conversion within
a dataset (g = 1, g = 10 and g = 50). However it is less sensitive to the presence of crossovers
unless they occur at very high rates (r = 50). In contrast, the gap extension parameter €
shows no differences in sensitivity to crossover versus gene conversion events (Figure S2). In
datasets with no indels, the € parameter remains at a stable rate, except for instances where
it is greatly increased, and within datasets with high recombination rates these events of
high estimated e appear to occur more frequently.

Gap initiation | Gap extension | Recombination Composite
) € P Log Likelihood

r=0,g=0 0.000118 0.359627 0.000288 -2734.146
‘indels’ 0.002071 0.816823 0.00176 -12069.547
r=1 0.000113 0.335785 0.000344 -2675.372
g=1 0.000371 0.391190 0.000402 -2634.446
r =10 0.000120 0.419876 0.001408 -2826.724
g =10 0.000471 0.506203 0.001416 -2971.568
r = 50 0.000223 0.484789 0.005425 -3433.202
g =50 0.000989 0.630480 0.005553 -3740.350

Table S3: Average parameter estimation results for simulated data. See Figures S1, S1, and
S3 for distributions of these estimated parameters.

Figure S3 shows the response of the recombination parameter p to the different simulated
datasets. In datasets with no recombination or indel processes, a low level of recombination
was estimated by the algorithm (note that some bias is expected, because rho must be
positive). An overlap between estimates of p occurs between datasets with no recombination
(r = 0) and datasets with low recombination (r = 1 and g = 1). However it can be seen
that estimates of p respond in a roughly linear fashion to the presence of moderate to
high recombination processes. It can be seen that estimates of p in the presence of either
crossovers or gene conversion events are similar. Naively one would expect the detected
amount of recombination in a dataset with gene conversion to be twice that of a dataset

10
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Figure S1: Simulation results of the parameter controlling gap initiation, 6. The ¢ parameter
is estimated to be high in datasets with high numbers of indels (indels). ¢ values are increased
in datasets containing gene conversion events (g = 1, g = 10 and g = 50), but only appear
to be sensitive to crossover events when the rate of crossover is high (r = 50). Datasets with
lower (¢ = 1 and g = 10) crossover rates or no recombination processes (r = 0) have very
consistent values of . For clarity, results of individual simulations have been ordered so that
the highest value is centered.
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Figure S2: Simulation results of the parameter controlling gap extension, €. Some datasets
show elevated values of €, especially those with higher recombination rates (r = 10, g =
10, » = 50 and g = 50), but again, the datasets containing true indels (indels) consistently
estimate high values of €. For clarity, results of individual simulations have been ordered so
that the highest value is centered.

g=1 r=10 g=10 r=50 g=50
Simulated Datasets

.
indels r

with crossover, as gene conversions are effectively double crossovers. Here, datasets with
gene conversion increase the estimated value of p only slightly, but increase the value of ¢§
more significantly. This indicates that although the model can detect large gene conversion
events as recombination, small gene conversion events are detected as indels.

It can be seen that the recombination parameter is influenced by datasets with high
numbers of indels, but no recombination (Figure S3). The reverse situation, the estimation
of 6 with a dataset with moderate to high amounts of recombination (r = 50 or ¢ = 50) but
no indels shows an increase in estimates of § (Figure S1), especially in datasets with gene
conversion events. Similarly, increasing amounts of recombination cause the e parameter to
increase in some datasets. In cases of high numbers of indels and no recombination, the
algorithm is able to detect the former well. The relationships between the parameters ¢ and
p are summarized in Table S4.

Relating p to coalescent recombination parameters

The true probability of recombination at a particular site in the dataset, r;;, approximates
—Pi__ where p;; is the estimated recombination probability and n is the number of
pij+(n—1) J B

sequences in the dataset. This itself can be approximated by % because of the very small

value of p when divided by the total length of the sequence, | Y |. As a result,

to
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Figure S3: Simulation results of the parameter controlling recombination. The distributions
of estimated values of p in the eight simulated datasets (as described in Table S2) show that
the model has a slight bias towards overestimating values of p. The datasets ‘00" (r =0, g =
0, no recombination) and ‘01’ (r = 0, g = 1, low levels of recombination) have comparable
values of p, however the datasets ‘10" and ‘indels’ also have similar values. However, values
of p for the ‘50’ dataset show considerably higher estimated values. For clarity, results of
individual simulations have been ordered so that the highest value is centered.

0 =high 0 =low
p =high unknown upward bias in ¢
accurate p
p =low accurate ¢ accurate ¢
upward bias in p accurate p

Table S4: The relationship between the estimation of the parameters d and p. Although
there is no program currently available that allows the simulation of the situation wherein
both indel rates and recombination rates are high in amino acid data, simulated data with
high p values and low § values have estimated parameters which are accurate for p and
slightly overestimated for §. In simulated data with low p values, estimated parameters are
accurate when ¢ is also low, and show a bias towards overestimation of p when 0 is high.
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and we can assess the accuracy of the simulations according to a coalescent framework
by finding the value of ’f%, results shown in Table S5.

p/l n | true r;; | mean estimated p | mean estimated p
(crossover) (gene conversion)
1/150 | 60 | 0.000111 0.000344 0.000402
10/150 | 60 | 0.000111 0.001408 0.001416
50/150 | 60 | 0.005556 0.005425 0.005553

Table S5: Comparison of true and estimated values of p. Estimated values of p show noteable
accuracy compared to the true value as calculated by §%

Testing for the presence of recombination

A likelihood ratio test can be applied to test the hypothesis that recombination exists in
the datasets using the quantity 2 (L, — L,—) where L; is the log likelihood at the estimated
value of p and L, =0 the log likelihood with no recombination. It is often assumed that
this approximates to a x? distribution. However there is no reason to make that assumption
here. To test our results formally, a simulation would be necessary to find the expected null
distribution. Such a test would provide a powerful test of recombination, but we do not
undertake it, namely because one of the ab initio assumptions of our model is that there
is recombination present in the data. Instead, we can examine the results of the likelihood
ratio values from the simulated datasets (Table S6), and this illustrates how the distribution
of these values responds to the amount of recombination in the datasets. There is a marked
response in the likelihoods to the amount of recombination present in the data.

Dataset Range of 2 (L; — L,—)
r=0,g=0 4.26 - 48.42

'indels’ 78.40 - 278.00
r=1 8.70 - 239.24
g=1 2.45 - 111.55
r=10 197.84 - 924.30
g=10 141.16 - 521.36
r=>50 1605.90 - 3902.50
g=50 1145.60 - 2611.16

Table S6: Likelihood ratio test results for simulated data. The range of values is considerable
but is considerably higher in datasets with high recombination rates. There is an overlap of
values for datasets with r =0 and r = 1or g = 1.

Estimated values of emission probabilities

Simulated values of the 20x20 pair emission matrix, eij and the 1x20 gap matrix, ei, were
investigated using heat matrices. The average values of the ten simulated datasets for r =
0, g = 0, indels, »r = 1, r = 10, and » = 50 can be seen in Figure S4. Results for ¢ = 1,

14
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Figure S4: Simulation results of the e;; parameters. Log scores of the substitution matrices
estimated using EM methods were visualized using a color gradient. Red entries denote low
probabilities, orange medium, and white entries denote high probabilities. Note how the
use of simulated datasets with indels affects the emission probability scores considerably.
INDELS refers to the indels dataset; SEQO00 to r = 0, g = 0, SEQO1 to » = 1, SEQ10 to r
= 10, and SEQ50 to r = 50.

g = 10 and g = 50 are highly similar and are not shown. After simulation on datasets with
no indels, the model estimated substitution matrices which penalize mismatched amino acid
pairs heavily. This was regardless of recombination value. In comparison, and as expected,
the indel dataset displays a much more heterogenous substitution matrix. All simulated
values of the 1x20 gap matrix stabilized around 0.05.

Speed and underflow

The multiplication of many probabilities in HMMs leads quickly to numerical stability
problems. Transforming the models equations into log space avoids potential underflow
errors since the log of a product is the sum of the logs. All calculations were carried out
in log space as detailed above. However, because summing of probabilities also occurs (for
instance in the forward algorithm), log space calculations quickly become quite complex.

Both the complexity and the memory usage of the model grow as O(I*k) where [ is the
length of sequences and k the number of sequences. As a comparison, the Needleman-Wunsch
algorithm takes O({?) time and memory (Durbin et al. 1998).
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