Supporting Information

Design and Synthesis of Neuroprotective Methylthiazoles and Modification as NO-Chimeras for Neurodegenerative Therapy

Zhihui Qin[†], Jia Luo[†], Lawren VandeVrede[†], Ehsan Tavassoli[†], Mauro Fa'[‡], Andrew Teich[‡],

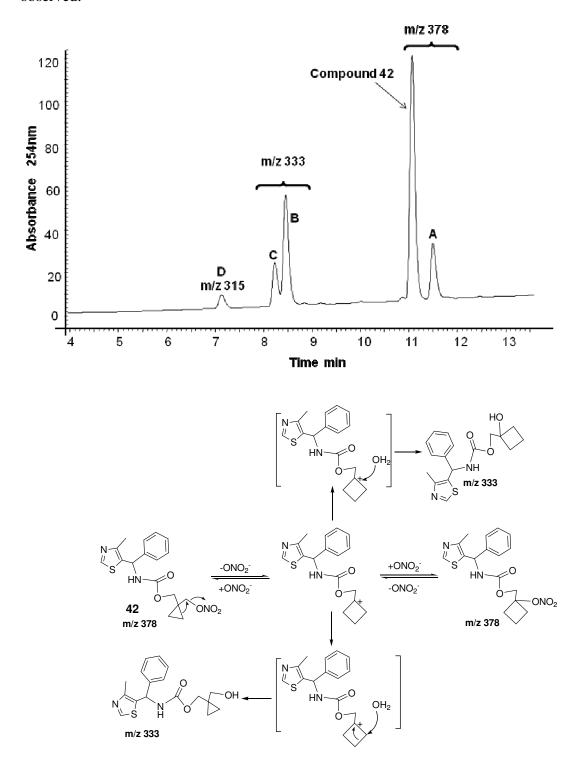
Ottavio Arancio[‡] and Gregory R. J. Thatcher[†],*

[†]Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612-7231

[‡]Department of Pathology & Cell Biology, The Taub Institute for Research on Alzheimer's

Disease and the Aging Brain, Columbia University, P&S #12-420D, 630W 168th St., New York,

NY 10032


E-mail: thatcher@uic.edu

^{*} To whom correspondence about the manuscript should be sent: Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago (MC 781), 833 S. Wood St., Chicago, IL 60612-7231. Tel: 312-355-5282. Fax: 312 996 7107.

Contents

- S3 **Figure S1.** Decomposition of **42** (100μM) in phosphate buffer (100 mM, pH 7.4).
- S4 **Table S1.** Relative percentage neuroprotection of primary neuronal cultures in response to NMDA neurotoxicity after co-treatment with MZ derivatives.

Figure S1. Decomposition of **42** (100 μ M) in phosphate buffer (100 mM, pH 7.4). Incubation was conducted at room temperature for 48h and analyzed by LC-MS with UV detection at 254nm. Four UV-detectable byproducts including two denitrated products (m/z = 333) were observed.

Table S1. Relative percentage neuroprotection of primary neuronal cultures in response to NMDA neurotoxicity after co-treatment with MZ derivatives.

	% after NMDA ^a		% after NMDA ^a
5a	26.7± 8.4		
CMZ	11.0 ± 5.3	5b	19.1 ± 11.2
10	23.9 ± 11.6	5d	59.0 ± 9.0
22a	-0.3 ± 5.8	5c	25.3 ± 11.3
22b	26.1 ± 4.8	5i	12.7 ± 5.3
23a	-0.3 ± 5.7	5e	39.6 ± 11.0
23b	21.5 ± 11.6	5f	19.8 ± 9.3
5g	37.1 ± 8.6		
25	5.9 ± 7.3	5h	29.5 ± 12.1
8	25.6 ± 9.7		
16	17.6 ± 8.1		
6a	-34.9 ± 5.1		
6b	6.7 ± 8.2	11a	0.6 ± 12.4
38	7.4 ± 7.1	11b	64.4 ±13.4
11c	18.3 ± 4.4		1
26	1.7 ± 4.4		
4	21.4 ± 6.4	30	19.6 ± 6.2

a. Readings from MTT assay at 24 h relative to vehicle in absence of NMDA (100% survival) and presence of NMDA (0% survival): %= (Drug-NMDA)/(DMSO-NMDA), NMDA (100 μ M). Values are presented as mean \pm SEM (n=6).