Comprehensive Experimental and Computational Analysis of Binding Energy Hot Spots at the NF-κB Essential Modulator/ IKKβ Protein-Protein Interface

Mary S. Golden¹, Shaun M. Cote¹, Marianna Sayeg², Brandon S. Zerbe², Elizabeth A. Villar¹, Dmitri Beglov², Stephen L. Sazinsky¹, Rosina M. Georgiadis¹, Sandor Vajda^{1,2*}, Dima Kozakov^{2*}, and Adrian Whitty^{1*}

Departments of Chemistry¹ and Biomedical Engineering², Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States Α

В

IKK Proteins			IC_{50} or K_D (μ M)
680 — N	3D 756	β-77 mer	0.0034ª, 1 ^b
701 N	3D 745	β-45mer	0.047 ^c , (0.015 - 0.030) ^d , 0.0762 ^e , 0.015 ^f
701 NI	3D 745	β -45mer Mut	>1 ^d
701 NI	3D 745	α/β -45 mer	0.036°
718 — N	3D 745	α/β -28 mer	7 ^g
727 <mark>– N</mark>	<u>3D</u> 745	α/β -19 mer	20 ^g
735 N	3D 745	α -11 mer	39 g
735 N	3D 745	β-11 mer	3600ª, 35 ^b , >10 ^d , >100 ^e
735 N	3D 745	β -Peptide	20 ^h
β -45mer:	PAKKSE	ELVAEAHNLCT	LLENAIQDTVREQDQSFTA <u>LDWSWL</u> QTE
β -45mer Mut:	PAKKSE	ELVAEAHNLCT	LLENAIQDTVREQDQSFTA <u>LDASAL</u> QTE
lpha/eta-45mer:	PAKKSE	ELVAEAHNLCT	LLENAIQDTVREQGNSMMNLDWSWLTE-
lpha/eta-28 mer:			TVREQGNSMMN <u>LDWSWL</u> TE-
lpha/eta-19 mer:		Т	LLENAIQDTVREQGNSMMN <u>LDWSWL</u> TE-
α -11 mer:			MMNLDWSWLTE-
β -11 mer:			TALDWSWLQTE
β -Peptide:			Propionyl-TA <u>LDWSWL</u> QTE-OH

Literature data on NEMO binding properties of IKKB point mutants and Figure S1. peptide fragments. (A) Pull-down studies with wild-type (WT) or IKKβ deletion and point mutations were performed with either full-length NEMO-FLAG or GST-NEMO.¹ ^aAn 11mer IKKβ peptide spanning the NBD dose-dependently blocked interaction of both IKKβ and IKK^β with full-length GST-NEMO in pull-down studies, and also disrupted preformed NEMO/IKK interactions.² (B) Literature results of measured binding affinities for IKK truncation proteins. ^aAverage K_D determined from SPR binding studies (Biacore) in which various concentrations of IKK^β were reacted with surface immobilized biotinylated NEMO (38-196).⁴ ^bK_D determined by isothermal titration calorimetry. IKK_B peptides were titrated into solutions containing His-tagged NEMO (38-196).⁴ ^cIC₅₀ determined when competing for binding of a biotinylated IKKα/β hybrid 45-mer peptide to GST-NEMO (1-196) as determined from concentration dependent FRET studies.³ ^dIC₅₀ determined when competing for binding of a TAMRA-IKKβ 45-mer peptide to NEMO (2-200) as determined from fluorescence polarization studies.⁵ eK_D determined from SPR binding studies (Biacore) of IKK β peptides and biotinylated NEMO (2-200).⁵ fAverage K_D determined when competing for binding of a FITC labeled IKKB peptide to full length NEMO (residues 2-419) in concentration dependent fluorescence anisotropy studies.⁶ gIC₅₀ determined when competing for binding of a biotinylated IKK α/β chimeric 44-mer peptide to GST-NEMO (2-200) as determined from concentration dependent FRET studies.⁵ Authors also reported IC_{50} values measured by Alphascreen.5 $^{\mathrm{h}}\mathrm{IC}_{50}$ determined when competing for binding of a biotinylated IKK β 11-mer peptide to GST-NEMO (1-196) as determined from concentration dependent FRET studies.³ ^hIC₅₀ determined when competing for binding of a 11-mer IKK_β peptide to His-NEMO-FLAG as determined from concentration dependent pull-down studies.⁷ The identified six residue NEMO binding domain (NBD) conserved in IKKα and IKKβ is underlined in the provided sequences in (A) and (B). Regions shown in green in (A) and (B) indicate residues from either a 45-mer IKK β peptide or IKK α/β hybrid peptide (701-745) which were both successfully crystallized with GST-NEMO (44-111).³

Figure S2. SDS-PAGE analysis of an arbitrary subset of the MBP-IKK β -His mutant constructs used in these studies. Shown is a representative image showing the sample purity of the MBP-IKK β -His constructs achieved using the expression and purification conditions discussed in the text. Samples were run under non-reducing conditions.

Figure S3. SDS-PAGE analysis of a subset of the MBP-IKK β -His fusion constructs after cleavage with Factor Xa, showing that incubation for 1 h with 1 µg of Factor Xa can completely and cleanly cleave up to 10 mg of MBP-IKK β -His fusion protein, as described in Materials and Methods. Samples were run under non-reducing conditions.

Competition

```
[task]
 data
         = equilibria
 task
         = fit
[mechanism]
 L + N \iff N.L :
                         K_{D1} dissoc ; L represents *IKK\beta, N represents NEMO
                         K_{D2} dissoc ; C represents competitor IKK\beta mutant (IKK\beta_C)
 C + N \iff N.C :
[concentrations]
 L = 15
 N = 15
[constants]
 KD1 = 3.6
 KD2 = 10?
[responses]
                     : Specific molar response of *IKKβ
 N.L = 0.006?
[equilibria]
 variable C
 offset 0.05
                     :
                         Value determined from control measurement in which no NEMO
                         (N) was present. Defined in the text as A_{F}.
 file ./rawdata.txt
[output]
 directory ./outputfit
[end]
```

Figure S4. DYNAFIT 4 code used to analyze inhibition data from the FA competition binding assay to determine the binding affinity (K_{D2}) for NEMO of an unlabeled IKK β competitor.

Figure S5. Simulated inhibition curves representing expected response from IKKβ competitors of varying affinities in the FA competitive binding assay. Curves were simulated assuming K_{D1} = 3.6 nM, specific molar response = 0.006 mP per nM, minimum anisotropy A_F = 0.05, [FITC-IKKβ] = 15 nM, and [NEMO] = 9 nM. Simulations are for IKKβ competitors with the following K_{D2} values: 1 nM, black line; 10 nM, red line; 100 nM, green line; 1000 nM, blue line; 10000 nM, cyan line; and 100000 nM, magenta line. Black dashed lines are included to show the relationship between % inhibition at a particular IKKβ competitor concentration and K_{D2} , as described in the text. All curves were simulated using a custom-written DYNAFIT 4 code (Figure S4).

	К _{D2} (г	nM)	ΔΔG (kcal/mol)		
	Base Construct	I723A	Base Construct	I723A	
Fit 1 (K _{D1} = 2.4 nM)	5.1	280	1.0	3.3	
Fit 2 (K _{D1} = 3.6 nM)	6.7	370	1.1	3.5	
Fit 3 (K _{D1} = 5.0 nM)	8.4	450	1.3	3.6	

Figure S6. Analysis of the robustness of fitted K_{D2} values obtained by analysis of data from the FA competition binding assay, with respect to error in the assumed value of K_{D1} . Plot shows experimental inhibition data for the base construct (closed circles) and IKKβ mutant I723A (open circles), along with best curve fits obtained using assumed K_{D1} values of 2.4 nM (Fit 1, solid lines), 3.6 nM (Fit 2, dashed lines) or 5.0 nM (Fit 3, dotted lines) for FITC-IKKβ. The solid, dotted, and dashed lines cannot be distinguished because they fall essentially on top of each other. All data were fitted using custom-written DYNAFIT 4 code (Figure S4), as described in the text. The table shows fitted K_{D2} values for the base construct and I723A mutant obtained by fitting with the different fixed values of K_{D1} , showing that the variation in the assumed value of K_{D1} results in a negligible change (<0.3 kcal/mol) in the computed binding free energy ($\Delta G = RTln(K_{D2})$ values and, due to cancelation of errors, causes no significant difference in the resulting $\Delta\Delta G$ values.

	701	710	720	730	740	
IKKS NED	PARKSEE	VARABNIST	LEENAIODTY	REDDOSFTAL	DWSWL OTE	2
Nomo sapiens INDO	DGETSAGE	IMENLNELG	HLSTIIHEAN	EECGNEMMNL	DWSWL TE	
Gorilla gorilla	PARKSEE	VAEAHNLCT	LLENAIODIV	RECOOSFTAL.	DWSWL.OTH	
Pongo abelii	PAKKSEE	VAEABNICT	LLENAIODIV	RECHOSFIAL	DWSNL.OTE	
Nomascus leucogenys	PAKKSEE	VAEABNLCT	LLENAIODTY	RECOOSFIAL	DWSWL . QAE	
Otolemur Garnettii	SAKKSEE	VAEANTLCT	CLESAVODTY	RECOOSFATL	DWSWL.QTE	
Tupaia belangeri	SSAES	. AOKHTICA	OLENANODEV.	RACDOSFMIL	DWSNLOOTE	
Ochotona princeps	SAKKSED	VAEAHSICS	CLESANDDEV	KOODORLMSL.	DWSWL.OTG	
Oryctolagus cuniculus	PVKKSED	VAEAHSLCT	OLESANO DIV	TIMESOODER.	DWSWL. OPE	
Cavia porcellus	PARKSEE	VAEAHSLCS	OLESTNODIM	KENDOSLMTL.	DWSWL . HTE	
Nus musculus	SDEKSEE	VAEAHALCS	RLESALODIV	KEGDRSFTTL.	DWSWL . QME	
Rattus norvegicus	SDEESEE	VAEABALCS	RLESALODIV	KOODRSFTTL.	DWSNL . QME	
Ictidomys tridecemlineatus	SARKSER	VAEAHTLCT	OLENANODIN	KEGDOSLMAL.	DWSNL.QTE	> Mammais
Felis catus	SVEKSEE	VAEANTLCT	OLENANODII	KEGDOSLRSL.	DWSML.QTE	
Ailuropoda melanoleuca	AVEKSEE	VAEABTICA	OLENANODIE	KEODOSWRSL.	DWSWL . QME	
Canis lupus familiaris	AIKKSEE	VAEANTLCT	OLENANODII	KEQDOMLRSL.	DWSNL.QTE	
Nustela putorius furo	AIKKSGE	VTEANTLCS	OLEHANODIE	RECOO SL RSL.	DWSNL.QTE	
Sus acrofa	AIKKSED	VAEAHSICA	OLENVLODIN	KEQDOSLKSL.	DWSWL.QVE	
Bos taurus	AAEKSED	VAEAHTLCT	OLENALODIM	KEQDQSLRSL.	DWSWL.QSE	
Equus caballus	SAKKSEE	VAEAHSICT	OLENAIODTH	KBCDQSLRSL.	DWSNL.QTE	
Nyotis Lucifuque	LVNKSEE	MAEAHNLCT	QLESANODIN	KEGDRELRSL.	DWSML . QME	
Pteropus vampyrus	TYNKSEE	MAEANTLCT	OLENANODIN	KEQDQELRSL.	DWSNL.QME	
Sorex araneus	SATESEE	VAEAQTLCA	OLENVIODAV	NGGGGG <mark>SL</mark> KSL	DWSWL.QTE	
Monodelphis domestica	SIKKSEE	VTETQELCT	OLOSHNEDAM	KKQDQ SF MTL	. DWSWL . HSE	
Ornithorhynchus anatinus	PIRKSED	VVEAQNLCT	OLENANODIN	KEQDREFMAL.	DWSWL.QID)
Sarcophilus harrisii	YAQVSEE	VMETQTLCT	OLONANE DIN	KKQDQSFMTL.	DWTWL . HSE	Marsupials
Gallus gallus	SVRKSEE	LLESQMLCS	OLENVNH DTH	KDQEQSFMAL.	DWSWLQ.LH	
Neleagriz gallopavo	SVRESEE	LLESQNLCS	OLESVNHDIN	KDQEQSFMAL.	DWSNLQ.LQ	> Birds
Pelodiscus sinensis	CIKKSEE	LMEANTLCS	OLDSVNODTH	KDQDQSFMAL	DWSWL., LE	5
Anolis carolinensis	AGIKSEE	LTESQTLCS	OLENVALDIN	KDQEHSFMAL.	. DWSWLK.LR	Reptiles
Xenopus tropicalis	YVEESED	LSESLKLCR	OMETSMAGEN	KEQDSELMSL.	DWSWLSQQE	- Amphibians
Latineria chalumnae	ERLEE	IEESQSICS	QIQNTIMDTE	RECEOSLALL	. DWSWLSPOR	٦ (
Gadus morbua	DEP	VEQSEMPES	REQCLLNDTI	QESES SNEML:	RENTHNNGGO	
Orecchronis niloticus	DES	VEENRTFES	REQSLENDTE	OESES SMEML	RENTNLRGGO	
Gasterosteus aculeatus	DES	VEESRIFEG	RLQSLLHDTI	Q D S Q S SNEVL:	RENTHLHSSO	Fish
Oryzias latipes	.SDES	LEESETFES	RLQSLLHTTI	QESES SMEMLS	RENTNLSGER	Cristi
Tetraodon nigroviridis	CSDES	VEESETFES	RLQSLLHDTI	QESTSSNEML.	SEWTHLR	1
Xiphophorus maculatus	DES	VEESRIFEG	RLOSLLHETI	QESES SMEMLS	KENTNLRGOE	1
Danio rerio	HTEESLH	ILESRIPEN	REQSLVODIE	ORTESSNOIL	REWENLNGGO)

Figure S7. Sequence alignment of human IKK β (701-745) with the corresponding region of human IKK α and with IKK β ortholog sequences from the Ensembl Genome Browser (<u>http://useast.ensembl.org/index.html</u>). Sequences were aligned using the ClustalW2 tool with the default settings for each parameter, except for the multiple sequence alignment gap open parameter which was set to 5. All available ortholog sequences are included that (a) contain significant homology (<50% identity) with human IKK β (701-745) and (b) contain the WxWL motif near the C-terminus.

Figure S8. Comparison of single site and cooperative binding models as explanations for IKKβ inhibition binding data. The data points are from Figure 3C of the manuscript. The black curve shows the original fit to an independent site binding mechanism (Scheme 1 in the manuscript). The red curve shows the best fit to a cooperative binding model in which the first and second K_D values were allowed to vary unconstrained. This fit gave a best-fit value for K_{D2} of 505 nM, which in the form of the model we used indicates that this second step does not contribute significantly to the variation in signal observed over the competitor concentration range used. The green curve shows the best fit obtained if K_{D1} is set to a value 10-fold higher than the single-site value of 5.1 nM but K_{D2} is allowed to vary freely, showing that there is no value K_{D2} can adopt that gives a good fit to the data.

Table S1. Density Overlap calculated fromfocused FTMap analysis of NEMO(44-111)		
Mutant	FTMap Density Overlap (# Probe Atoms)	
L708A	363	
V709A	206	
N714A	0	
L715A	446	
L719A	361	
I723A	0	
D725A	-10	
T726A	-28	
V727A	0	
E729A	0	
Q730A	0	
S733A	0	
F734A	270	
T735A	-1	
L737A	167	
D738A	0	
W739A	511	
S740A	0	
W741A	386	
L742A	269	

Table S2. Complementary Oligonucleotide Primers used to Create the Base Construct by Site-Directed Mutagenesis of the MBP-IKKβ-His Construct^a

Primer	DNA Sequence
C716S-s	GTGGCGGAAGCCCATAACCTG <u>AGC</u> ACCCTGCTGGAAAATGCAATTC GAATTGCATTTTCCAGCAGGGTGCTCAGGTTATGGGCTTCCGCCAC
0/100 0	

^aSequences are given in the 5' \rightarrow 3' direction. The codon position of the serine mutation (C716S) is underlined for the sense (s) primer.

Primer **DNA Sequence** L708A-s CGGCGAAAAAATCTGAAGAAGCGGTGGCGGAAGCCCATAACCTG CAGGTTATGGGCTTCCGCCACCGCTTCTTCAGATTTTTTCGCCG L708A-a GCGAAAAAATCTGAAGAACTGGCGGCGGAAGCCCATAACCTGAGC V709A-s GCTCAGGTTATGGGCTTCCGCCGCCAGTTCTTCAGATTTTTCGC V709A-a CTGAAGAACTGGTGGCGGAAGCCCATGCGCTGAGCACCCTGCTGGAAAATGC N714A-s GCATTTTCCAGCAGGGTGCTCAGCGCATGGGCTTCCGCCACCAGTTCTTCAG N714A-a CTGGTGGCGGAAGCCCATAACGCGAGCACCCTGCTGGAAAATGC L715A-s GCATTTTCCAGCAGGGTGCTCGCGTTATGGGCTTCCGCCACCAG L715A-a GCCCATAACCTGAGCACCCTGGCGGAAAATGCAATTCAGGATACG L719A-s CGTATCCTGAATTGCATTTTCCGCCAGGGTGCTCAGGTTATGGGC L719A-a GCACCCTGCTGGAAAATGCAGCGCAGGATACGGTTCGTGAACAG 1723A-s CTGTTCACGAACCGTATCCTGCGCTGCATTTTCCAGCAGGGTGC I723A-a CTGCTGGAAAATGCAATTCAGGCGACGGTTCGTGAACAGGATCAG D725A-s CTGATCCTGTTCACGAACCGTCGCCTGAATTGCATTTTCCAGCAG D725A-a GCTGGAAAATGCAATTCAGGATGCGGTTCGTGAACAGGATCAGAGC T726A-s GCTCTGATCCTGTTCACGAACCGCATCCTGAATTGCATTTTCCAGC T726A-a GGAAAATGCAATTCAGGATACGGCGCGTGAACAGGATCAGAGCTTTACCG V727A-s CGGTAAAGCTCTGATCCTGTTCACGCGCCGTATCCTGAATTGCATTTTCC V727A-a GCAATTCAGGATACGGTTCGTGCGCAGGATCAGAGCTTTACCGC E729A-s GCGGTAAAGCTCTGATCCTGCGCACGAACCGTATCCTGAATTGC E729A-a GCAATTCAGGATACGGTTCGTGAAGCGGATCAGAGCTTTACCGCGCTGG Q730A-s CCAGCGCGGTAAAGCTCTGATCCGCTTCACGAACCGTATCCTGAATTGC Q730A-a CGGTTCGTGAACAGGATCAGGCGTTTACCGCGCTGGATTGGTCTTGG S733A-s CCAAGACCAATCCAGCGCGGTAAACGCCTGATCCTGTTCACGAACCG S733A-a GGTTCGTGAACAGGATCAGAGCGCGACCGCGCTGGATTGGTCTTGG F734A-s CCAAGACCAATCCAGCGCGGTCGCGCTCTGATCCTGTTCACGAACC F734A-a GTGAACAGGATCAGAGCTTTGCCGGCGCTGGATTGGTCTTGGCTG T735A-s CAGCCAAGACCAATCCAGCGCCGCAAAGCTCTGATCCTGTTCAC T735A-a GAACAGGATCAGAGCTTTACCGCGGCGGATTGGTCTTGGCTGCAGACG L737A-s CGTCTGCAGCCAAGACCAATCCGCCGCGGTAAAGCTCTGATCCTGTTC L737A-a GATCAGAGCTTTACCGCGCTGGCGTGGTCTTGGCTGCAGACGGAAG D738A-s CTTCCGTCTGCAGCCAAGACCACGCCAGCGCGGTAAAGCTCTGATC D738A-a GATCAGAGCTTTACCGCGCTGGATGCGTCTTGGCTGCAGACGGAAGG W739A-s CCTTCCGTCTGCAGCCAAGACGCATCCAGCGCGGTAAAGCTCTGATC W739A-a GCTTTACCGCGCTGGATTGGGCGTGGCTGCAGACGGAAGGAGG S740A-s CCTCCTTCCGTCTGCAGCCACGCCCAATCCAGCGCGGTAAAGC S740A-a GCTTTACCGCGCTGGATTGGTCTGCGCTGCAGACGGAAGGAGGTGG W741A-s CCACCTCCTTCCGTCTGCAGCGCAGACCAATCCAGCGCGGTAAAGC W741A-a CCGCGCTGGATTGGTCTTGG<u>GCG</u>CAGACGGAAGGAGGTGGAGG L742A-s CCTCCACCTCCTTCCGTCTGCGCCCAAGACCAATCCAGCGCGG L742A-a

 Table S3. Complementary Oligonucleotide Primers used for Site-Directed Mutagenesis of the

 Base Construct^a

^{*a*}Sequences are given in the 5 ' \rightarrow 3' direction. The codon position of each mutation is underlined for the sense (s) primer.

Table S4. IKK β Peptides Used in Fluorescence Anisotropy Studies		
Peptide	Sequence	
ΙΚΚβ(701-745)	PAKKSEELVAEAHNL <u>C</u> TLLENAIQDTVREQDQSFTALDWSWLQTE	
ΓΙΤϹ-ΙΚΚ β	FITC-Ahx-PAKKSEELVAEAHNLCTLLENAIQDTVREQDQSFTALD	
	WSWLQTE ^a	

^aAhx = 6-aminohexanoic acid

REFERENCES

- 1. May, M. J., Marienfeld, R. B., and Ghosh, S. (2002) Characterization of the IkB-kinase NEMO Binding Domain, *J. Biol. Chem.* 277, 45992-46000.
- (2) May, M. J., D'Acquisto, F., Madge, L. A., Glockner, J., Pober, J. S., and Ghosh, S. (2000) Selective Inhibition of NF-kappa B Activation by a Peptide That Blocks the Interaction of NEMO with the Ikappa B Kinase Complex, *Science 289*, 1550-1554.
- Rushe, M., Silvian, L., Bixler, S., Chen, L. L., Cheung, A., Bowes, S., Cuervo, H., Berkowitz, S., Zheng, T., Guckian, K., Pellegrini, M., and Lugovskoy, A. (2008) Structure of a NEMO/IKK-Associating Domain Reveals Architecture of the Interaction Site, *Structure 16*, 798-808.
- 4. Lo, Y. C., Maddineni, U., Chung, J. Y., Rich, R. L., Myszka, D. G., and Wu, H. (2008) Highaffinity interaction between IKK beta and NEMO, *Biochemistry 47*, 3109-3116.
- Baima, E. T., Guzova, J. A., Mathialagan, S., Nagiec, E. E., Hardy, M. M., Song, L. R., Bonar, S. L., Weinberg, R. A., Selness, S. R., Woodard, S. S., Chrencik, J., Hood, W. F., Schindler, J. F., Kishore, N., and Mbalaviele, G. (2010) Novel Insights into the Cellular Mechanisms of the Anti-inflammatory Effects of NF-kB Essential Modulator Binding Domain Peptides, *J. Biol. Chem. 285*, 13498-13506.
- Shaun M. Cote, Mary S. Golden., Thomas D. Gilmore, Kimberley Glover, Melanie Herscovitch, Thomas Ennis, Adrian Whitty, Mutation of Non-Essential Cysteines Shows that NF-κB Essential Modulator (NEMO) Forms a Constitutive Noncovalent Dimer that Binds IκB Kinase-β (IKKβ) with High Affinity (Submitted)
- Strnad, J., McDonnell, P. A., Riexinger, D. J., Mapelli, C., Cheng, L., Gray, H., Ryseck, R.
 P., and Burke, J. R. (2006) NEMO binding domain of IKK-2 encompasses amino acids 735–745, *J. Mol. Recognit.* 19, 227-233.