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The mechanism of transcriptional activation of human leukocyte antigen class I genes by gamma interferon
and 5-azacytidine was studied in K562 human leukemia cells. Nuclear run-on transcription assays with various
protein and RNA synthesis inhibitors yield evidence for both stimulation of a positive regulatory factor and
inhibition of an mRNA that codes for a labile repressor. A novel mechanism is proposed to explain how
5-azacytidine can activate repressed genes without affecting DNA methylation.

The expression of class I human leukocyte antigens
(HLAs) encoded by the major histocompatibility complex
appears to be important in controlling the metastatic growth
of certain murine tumors. Transfection of a class I gene into
highly tumorigenic cell lines transformed by adenovirus type
12 or AKR leukemia cell lines that express no detectable
class I surface antigens results in expression of class I
surface antigen and complete loss of oncogenicity (14, 30,
35, 36). Administration of interferon to mice that have
received a tumorigenic dose of adenovirus type 12-
transformed class I-deficient cells induces class I expression
and results in protection of immunocompetent host animals
from the tumor (13). Although such direct relationships
between class I expression and oncogenicity have not been
demonstrated in human tumors in vivo, many human tumors
are known to have deficiencies in class I antigens (8, 18, 31).
It has been reported that adenovirus type 12 ElA proteins
can repress class I expression in transformed human embry-
onic cells and that treatment with gamma interferon (IFN-y)
overrides this repressive effect (13, 32). An understanding of
the factors that control class I antigen expression in human
tumor cells may have therapeutic significance in light of the
key role of class I antigens in cytotoxic lymphocyte reac-
tions (6, 11) and recent strategies involving lymphocyte-
mediated killing (26).

In this laboratory, the K562 human leukemia cell line (20),
which expresses very low levels of class I antigens, has been
used as a model to study the molecular mechanisms for
decreased class I expression by tumor cells. We reported
previously that two agents, IFN-y and 5-azacytidine
(5azaCR), are capable of synergistically increasing class I
expression in K562 cells in the absence of differentiation and
that at least part of the effect is transcriptional (4). To
understand the molecular mechanism of the enhancement of
transcription effected by IFN-y and 5azaCR and the cause of
repression of class I transcription in this tumor cell, we have
conducted a detailed analysis of the action of these agents.
The results allow us to propose a hypothesis that describes
the basis of decreased HLA class I gene transcription in
K562 cells and accounts for the synergistic effects of 5azaCR
and IFN-y in modulating class I transcription. The mecha-
nism of action of 5azaCR in these experiments is also of
general relevance to the interpretation of results in other
experimental systems in which 5azaCR has been demon-
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strated to affect specific gene expression either directly or in
combination with other inducers (15).

Class I transcriptional activity in K562 cells treated with
5azaCR or IFN-y, singly or in combination, was measured
by nuclear run-on transcription assays (4). Nuclei were
isolated from cells treated with 5azaCR (2 FiM) or IFN--y (100
U/ml), or both agents simultaneously, for the indicated
periods between 0 and 48 h. The maximum level of transcrip-
tion was reached by about 4 h and remained elevated for at
least 48 h, as long as both IFN-y and 5azaCR were present in
the medium. Little or no transcription was detected when
either agent was present alone (Fig. IA and B and 2). These
results indicate that IFN-y and 5azaCR synergistically in-
duced class I transcription and that most of the increase in
class I steady-state mRNA detected in cells treated with
IFN-y alone in our previous studies (4) was due to effects of
IFN-y on RNA processing or stability.
One striking feature of the time course of class I induction

by 5azaCR plus IFN-y (depicted in Fig. 2) is the relatively
long delay (4 h) required for the maximum transcription rate
to be reached, compared to the much shorter induction times
(<30 min) required for other receptor-mediated transcrip-
tional events, including that reported for interferons (10, 19,
21). This delay could be explained by a requirement for
synthesis of an early response protein that increases class I
transcription. To test this possibility, transcription induction
was carried out in the presence of cycloheximide (CHX), a
protein synthesis inhibitor. Adding CHX (50 ,ug/ml; Sigma
Chemical Co.) to the medium 2 h before and during treat-
ment with 5azaCR plus IFN-y for 4 h completely blocked
class I transcription without affecting actin gene transcrip-
tion (Fig. 1D). Transcription was also blocked by first
incubating the cells with CHX for 2 h and then adding
5azaCR plus IFN-y for up to 24 h (data not shown).
Continuous protein synthesis was therefore required for
stimulation of class I gene transcription in this tumor cell
line, supporting the idea that an early response gene coding
for a positive trans-acting protein was induced by IFN-y or
5azaCR plus IFN-y. This conclusion is also consistent with
previous evidence that IFN--y does not stimulate accumula-
tion of stable mRNA for 2',5'-oligo(A) polymerase in the
presence of protein synthesis inhibitors (1). However, a
simple model in which IFN-y and 5azaCR directly stimulate
a positive trans-acting factor, which in turn stimulates class
I transcription, does not account for the apparent lack of
stimulation by either agent alone.
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FIG. 1. Transcription ofHLA class I and a-actin genes in nuclei
from cells treated with various inducers and inhibitors. 32P-labeled
transcripts were hybridized to filters containing HLA-B7 class I
cDNA sequences (lane 1 in each panel) and human a-actin se-
quences (lane 2 in each panel) and subjected to autoradiography.
The cell treatment regimens corresponding to the transcription
assays are as follows: (A) 4 h of IFN-,y (100 U/ml) only; (B) 4 h of
5azaCR (2 ,uM) only; (C) 4 h of 5azaCR plus IFN--y; (D) 2 h of CHX
(50 Fg/ml) followed by 4 h of CHX plus 5azaCR plus IFN--y.

There is ample evidence that IFN-y can stimulate HLA
gene expression (9, 34), but the role of 5azaCR, especially
during the short time course of the present experiments, is
not immediately apparent. The major known mechanisms of
action of SazaCR include inhibition ofDNA methylation and
inhibition ofRNA and DNA synthesis after incorporation of
5azaCR into cellular RNA and DNA (33). Previous studies
from this laboratory have documented that 5azaCR, at the
concentrations used here, does not lead to a significant
alteration in DNA synthesis (4), and the 4-h time course
required for maximum transcriptional induction by 5azaCR
plus IFN--y would not be consistent with 5azaCR having an
effect on DNA synthesis. Similarly, because most studies
have shown that the effect of SazaCR on DNA methylation
requires DNA replication (15, 16), hypomethylation of class
I genes would also appear to be an unlikely mechanism in
this setting. However, a recent report indicates that some
chemical inducers can cause rapid and widespread demeth-
ylation of DNA in murine erythroleukemia cells within 8 to
12 h (25). To test whether 5azaCR acts to stimulate tran-
scription by inducing rapid DNA demethylation in K562
cells, we assayed the methylation status of CCGG and
GCGC sites within HLA class I genes by analysis with the
restriction enzymes HpaII, HhaI, and MspI. DNA was
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FIG. 2. Transcription time course for K562 cells induced by

5azaCR (5-Aza), IFN-^y, or 5azaCR plus IFN-y. Autoradiograms
such as those in Fig. 1 were scanned at an optical density at 550 nm
with a model DU-8 integrating scanning densitometer (Beckman).
All HLA class I transcription levels are expressed relative to the
transcription levels in untreated cells. Each point on the graph
represents an average value derived from at least three separate
experiments in which actin transcription was simultaneously mea-
sured to control for assay variability.
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FIG. 3. Southern blot showing the methylation status at CCGG
and GCGC sites in the HLA B locus (in each panel) in uninduced
cells (lane 1), cells treated with 5azaCR for 4 h (lane 2), and cells
treated with 5azaCR plus IFN for 4 h (lane 3). Genomic DNAs were
first digested with BamHI (panel 2, lanes 1 to 3), then with HpaII
(panel 3, lanes 1 to 3), MspI (panel 4, lanes 1 to 3), or HhaI (panel
5, lanes 1 to 3).

isolated from either control cells or cells treated for 4 h with
5azaCR alone or 5azaCR plus IFN-y. This DNA was ana-
lyzed for methylation in the class I gene locus by digestion
with either HhaI or HpaII, both of which are inhibited by
methylation at GCGC or CCGG sites, respectively, or with
MspI, which cleaves despite methylation at CCGG sites (22).
The resulting Southern blot filter was hybridized to an
end-labeled oligonucleotide that is specific for the HLA class
I B locus gene (7), which is both expressed and induced by
5azaCR plus IFN-y treatment (data not shown). The results
of this assay (Fig. 3) show that methylation in the vicinity of
the HLA class I B locus gene was not changed by treatment
of cells with either 5azaCR or 5azaCR plus IFN--y. The same
lack of change in methylation at CCGG and GCGC sites after
4 h of treatment with 5azaCR was observed when the filter
shown was rehybridized either to a probe for the human
ApoA-I gene, which is not expressed in these cells (3), or to
the HLA-B7 cDNA probe which hybridizes to multiple
expressed class I alleles (27) (data not shown). Thus, exten-
sive strand-symmetric demethylation did not appear to be
responsible for the effect of 5azaCR in our experiments,
since at the time when maximal transcription was observed,
no gross changes in HLA class I gene methylation were
detectable.
Given that alterations in DNA synthesis and DNA meth-

ylation cannot account for the ability of 5azaCR to synergis-
tically augment class I transcription, the most likely possi-
bility remaining is that 5azaCR acts by inhibiting mRNA
synthesis. To explore this possibility, another cytidine ana-
log, cytosine arabinonucleoside (Ara-C), was substituted for
5azaCR in identical induction experiments. Like 5azaCR,
Ara-C acts at the S phase of the cell cycle and has been
reported to inhibit RNA (5) and DNA synthesis (17), but,
unlike 5azaCR, it has little or no effect on DNA methylation
(16). Run-on transcription assays from nuclei of cells treated
for 4 h with Ara-C (1 ,uM; Sigma) alone showed no class I
transcription (Fig. 4A), but when cells were treated with
Ara-C in combination with IFN-y for 4 h, transcription was
stimulated (Fig. 4B).
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