

Supplementary Figure S1. Comprehensive pair-wise yeast two-hybrid screen. (A) Bait vectors showing auto-activation with empty prey vector. Empty bait vector was used for negative control, these auto-activating bait vectors were eliminated from the screen. (B) Verification and scoring of protein-protein interactions. Transformants were selected on double dropout (DDO) plates, and interactions were tested by growth on triple dropout + 3AT (TDO/3AT) and quadruple dropout + aureobasidin A (QDO/A) plates.

Strain	Length of cells with 2 SPB (μm)
sid4-mCherry	14.3 ± 0.8
sid4-mCherry skb1∆	12.9 ± 0.6

Supplementary Figure S2. Length of cells from the indicated genotypes with separated SPBs, as marked by Sid4-mCherry (mean \pm s.d.; n > 50 cells for each value).

Strain	Length at division (µm)
WT	13.7 ± 1.0
skb1-3GFP	13.8 ± 1.0
skb1(E422A,E431A)-3GFP	13.7 ± 0.7

Supplementary Figure S3. Length of dividing, septated cells of the indicated genotypes (mean \pm s.d.; n > 50 for each value). Note that cell length at division is not affected by Skb1-3GFP tag or by methyltransferase dead mutant *skb1(E422A,E431A)-3GFP*.

Supplementary Figure S4. GFP-Cdr1 levels are not reduced by co-overexpression of Skb1. Cells were induced as in Figure 3B, and whole-cell extract was probed by Western blot using the indicated antibodies. Asterisk marks nonspecific band.

strain	overexpression	Length at division (µm)
WT	none	13.5 ± 1.1
	cdr1	8.1 ± 0.9
	skb1	18.9 ± 2.7
nif1∆	none	12.0 1.2
	cdr1	7.9 ± 1.0
	skb1	19.1 ± 2.0
pom1∆	none	11.7 ± 0.9
	cdr1	7.9 ± 0.9
	skb1	19.8 ± 2.3
cdr1∆	none	17.5 ± 1.5
	cdr1	8.2 ± 1.0
	skb1	24.1 ± 3.5
cdr2∆	none	18.5 ± 1.3
	cdr1	8.2 ± 1.0
	skb1	22.1 ± 3.4
wee1∆	none	8.3 ± 1.3
	cdr1	8.3 ± 1.1
	skb1	8.4 ± 1.1

Supplementary Figure S5. The indicated strains were induced to over-express the indicated genes for 20 hours at 32°C using a multicopy pREP3 plasmid. Values for cell length at division are mean \pm s.d.; n > 50 for each value.

Supplementary Figure S6. (A) Cdr2 localization is independent of Skb1. Images are inverted maximum projections from deconvolved Z-series. (B) Skb1 localization is independent of Cdr2. Images are inverted maximum projections from deconvolved Z-series. (C) Localization of Cdr2-mEGFP and Skb1-GBP-mCherry in separate strains. Note that Skb1-GBP-mCherry localization mimics Skb1-3GFP. These tags were combined in the same strain for Figure 7B. Images are inverted maximum projections from deconvolved Z-series. (D) Western blot to compare expression levels of Skb1-mEGFP versus Skb1-mEGFP-CAAX. Whole-cell extracts were resolved by SDS-PAGE, transferred to nitrocellulose, and probed with anti-GFP antibody. Anti-TAT1 was used as a loading control. (E) Skb1-mEGFP-CAAX does not disrupt Pom1 localization at cell tips. Images are from a single deconvolved focal plane. Scale bar, 5 μm.

ND ND ND ND ND ND ND Bud6 Cdc2 ND ND ND ND ND ND ND ND ND Cdc42 ND ND ND ND ND ND ND ND Cdr1 ND ND ND ND ND ND ND ND Cdr2 ND ND ND ND ND ND ND ND Clp1 ND Dis1 NE ND ND ND ND ND For3 ND Kin1 ND ND ND ND Ksg1 ND Mid1 ND ND 3 ND ND 4 ND 4 Mob2 ND ND ND ND ND ND ND Mod5 ND Mor₂ ND ND ND ND ND Nif1 ND Orb6 ND ND Pak1 ND NC ND ND ND ND ND ND ND Par1 ND Par2 NC ND ND ND ND Pil1 Pmo25 ND Pom1 ND Ppk2 Ppk5 NC Ptc1 ND Rga4 Scd1 ND ND ND ND ND ND ND ND ND Scd2 ND ND ND ND ND ND ND Shk2 ND ND ND ND ND ND ND ND Skb1 ND ND ND ND Skb5 ND Slm1 SPBC29B5.040 ND Ssp1 Tea1 ND Tea2 Tea3 ND ND ND ND ND ND ND ND Tea ND Tip1 ND Wee1 ND ND ND ND ND ND ND Interact only on QDO/A No interaction Interact on QDO/A +TDO/3AT ND: Not determined Number: Reference

Table S1. Summary of protein-protein interactions obtained from two-hybrid screen. Numbers indicate previously known interactions and their references below.

References

- 1. Wu, L., and Russell, P. (1997). Nif1, a novel mitotic inhibitor in Schizosaccharomyces pombe. EMBO J *16*, 1342-1350.
- 2. Pelloquin, L., Ducommun, B., and Belenguer, P. (1999). Interaction between the fission yeast nim1/cdr1 protein kinase and a dynamin-related protein. FEBS Lett *443*, 71-74.
- 3. Hou, M.C., Wiley, D.J., Verde, F., and McCollum, D. (2003). Mob2p interacts with the protein kinase Orb6p to promote coordination of cell polarity with cell cycle progression. J Cell Sci *116*, 125-135.
- 4. Kanai, M., Kume, K., Miyahara, K., Sakai, K., Nakamura, K., Leonhard, K., Wiley, D.J., Verde, F., Toda, T., and Hirata, D. (2005). Fission yeast MO25 protein is localized at SPB and septum and is essential for cell morphogenesis. EMBO J *24*, 3012-3025.
- 5. Wiley, D.J., Marcus, S., D'Urso, G., and Verde, F. (2003). Control of cell polarity in fission yeast by association of Orb6p kinase with the highly conserved protein methyltransferase Skb1p. J Biol Chem 278, 25256-25263.
- 6. Chang, E., Bartholomeusz, G., Pimental, R., Chen, J., Lai, H., Wang, L., Yang, P., and Marcus, S. (1999). Direct binding and In vivo regulation of the fission yeast p21-activated kinase shk1 by the SH3 domain protein scd2. Mol Cell Biol *19*, 8066-8074.
- Gilbreth, M., Yang, P., Wang, D., Frost, J., Polverino, A., Cobb, M.H., and Marcus, S. (1996). The highly conserved skb1 gene encodes a protein that interacts with Shk1, a fission yeast Ste20/PAK homolog. Proc Natl Acad Sci U S A 93, 13802-13807.
- 8. Yang, P., Pimental, R., Lai, H., and Marcus, S. (1999). Direct activation of the fission yeast PAK Shk1 by the novel SH3 domain protein, Skb5. J Biol Chem 274, 36052-36057.

- 9. Tatebe, H., Nakano, K., Maximo, R., and Shiozaki, K. (2008). Pom1 DYRK regulates localization of the Rga4 GAP to ensure bipolar activation of Cdc42 in fission yeast. Curr Biol *18*, 322-330.
- 10. Martin, S.G., McDonald, W.H., Yates, J.R., 3rd, and Chang, F. (2005). Tea4p links microtubule plus ends with the formin for3p in the establishment of cell polarity. Dev Cell *8*, 479-491.
- 11. Feierbach, B., Verde, F., and Chang, F. (2004). Regulation of a formin complex by the microtubule plus end protein tea1p. J Cell Biol *165*, 697-707.
- 12. Busch, K.E., Hayles, J., Nurse, P., and Brunner, D. (2004). Tea2p kinesin is involved in spatial microtubule organization by transporting tip1p on microtubules. Dev Cell *6*, 831-843.

Plasmid	Description	Note	Selection
pJM587	pGBKT7	-	Kan, TRP
pJM588	pGBKT7-pom1	-	Kan, TRP
pJM589	pGBKT7-rga4	-	Kan, TRP
pJM591	pGBKT7-scd1	-	Kan, TRP
pJM592	pGBKT7-scd2	-	Kan, TRP
pJM594	pGBKT7-skb1	-	Kan, TRP
pJM595	pGBKT7-skb5	-	Kan, TRP
pJM596	pGBKT7-pak1	-	Kan, TRP
pJM597	pGBKT7-shk2	-	Kan, TRP
pJM598	pGBKT7-mid1	-	Kan, TRP
pJM599	pGBKT7-cdr2	C488T (L163P)	Kan, TRP
pJM600	pGBKT7-cdr1	-	Kan, TRP
pJM601	pGBKT7-nif1	-	Kan, TRP
pJM602	pGBKT7-wee1	-	Kan, TRP
pJM603	pGBKT7-cdc2	-	Kan, TRP
pJM604	pGBKT7-mor2N	aa 1-1100	Kan, TRP
pJM605	pGBKT7-pmo25	-	Kan, TRP
pJM606	pGBKT7-nak1	-	Kan, TRP
pJM607	pGBKT7-orb6	-	Kan, TRP
pJM608	pGBKT7-mob2	-	Kan, TRP
pJM609	pGBKT7-ppk2	aa 1-649	Kan, TRP
pJM610	pGBKT7-ppk5	-	Kan, TRP
pJM611	pGBKT7-kin1	-	Kan, TRP
pJM612	pGBKT7-ssp1	-	Kan, TRP
pJM613	pGBKT7-pil1	-	Kan, TRP
pJM614	pGBKT7-slm1	-	Kan, TRP
pJM616	pGBKT7-tip1	-	Kan, TRP
pJM617	pGBKT7-mod5	-	Kan, TRP
pJM618	pGBKT7-tea1	-	Kan, TRP
pJM619	pGBKT7-tea2	-	Kan, TRP
pJM620	pGBKT7-tea3	-	Kan, TRP
pJM621	pGBKT7-tea4	-	Kan, TRP
pJM622	pGBKT7-for3	-	Kan, TRP
pJM623	pGBKT7-bud6	-	Kan, TRP
pJM624	pGBKT7-par1	-	Kan, TRP
pJM626	pGBKT7-SPBC29B5.04C	-	Kan, TRP
pJM627	pGBKT7-clp1	-	Kan, TRP
pJM628	pGBKT7-ptc1	-	Kan, TRP
pJM629	pGBKT7-ksg1	-	Kan, TRP
pJM630	pGADT7	-	Amp, LEU
pJM631	pGADT7-pom1	-	Amp, LEU
pJM632	pGADT7-rga4	-	Amp, LEU
pJM633	pGADT7-cdc42	-	Amp, LEU
pJM634	pGADT7-scd1	-	Amp, LEU

Table S2. Plasmids used in this study

pJM635	pGADT7-scd2	-	Amp, LEU
pJM637	pGADT7-skb1	-	Amp, LEU
pJM638	pGADT7-skb5	-	Amp, LEU
pJM639	pGADT7-pak1	-	Amp, LEU
pJM640	pGADT7-shk2	-	Amp, LEU
pJM641	pGADT7-mid1	-	Amp, LEU
pJM642	pGADT7-cdr2	-	Amp, LEU
pJM643	pGADT7-cdr1	C749A (P250Q)	Amp, LEU
pJM644	pGADT7-nif1	-	Amp, LEU
pJM645	pGADT7-wee1	-	Amp, LEU
pJM646	pGADT7-cdc2	-	Amp, LEU
pJM647	pGADT7-mor2	A5075G (T1692A)	Amp, LEU
pJM648	pGADT7-pmo25	-	Amp, LEU
pJM650	pGADT7-orb6	-	Amp, LEU
pJM651	pGADT7-mob2	-	Amp, LEU
pJM652	pGADT7-ppk2	-	Amp, LEU
pJM653	pGADT7-ppk5	-	Amp, LEU
pJM654	pGADT7-kin1	-	Amp, LEU
pJM655	pGADT7-ssp1	-	Amp, LEU
pJM656	pGADT7-pil1	-	Amp, LEU
pJM657	pGADT7-slm1	-	Amp, LEU
pJM658	pGADT7-dis1	-	Amp, LEU
pJM659	pGADT7-tip1	-	Amp, LEU
pJM660	pGADT7-mod5	-	Amp, LEU
pJM661	pGADT7-tea1	-	Amp, LEU
pJM662	pGADT7-tea2	-	Amp, LEU
pJM663	pGADT7-tea3	-	Amp, LEU
pJM664	pGADT7-tea4	-	Amp, LEU
pJM665	pGADT7-for3	-	Amp, LEU
pJM666	pGADT7-bud6	-	Amp, LEU
pJM667	pGADT7-par1	-	Amp, LEU
pJM668	pGADT7-par2	-	Amp, LEU
pJM669	pGADT7-SPBC29B5.04C	-	Amp, LEU
pJM670	pGADT7-clp1	-	Amp, LEU
pJM671	pGADT7-ptc1	-	Amp, LEU
pJM672	pGADT7-ksg1	-	Amp, LEU
pJM705	pGADT7-cdr1 (1-258)	-	Amp, LEU
pJM706	pGADT7-cdr1 (259-593)	-	Amp, LEU
pJM210	pREP3x	-	Amp, LEU
pJM416	pREP3x-6His-Cdr1	-	Amp, LEU
pJM482	pREP3x-6His-Skb1	-	Amp, LEU
pJM684	pJK148-Pskb1-skb1-3GFP-Tskb1-KanR	-	Amp
pJM763	pjx148-PSK01-SK01(E422A,E431A)- 3GFP-Tskb1-KanR	SDM of pJM684	Amp
. .		1	1

Table S3. Strains used in this study

Strain	Genotype	Source
JM14	cdc25- $22 h$ +	lab collection
JM186	$pom1\Delta$:: $ura4+ura4-D18 h+$	lab collection
JM199	$cdr2\Delta$:: $ura4+$ $ura4-D18$ $h+$	lab collection
JM228	wee1-50 h+	lab collection
JM366	972 h-	lab collection
JM454	cdr1-3GFP::kanMX6 h-	lab collection
JM482	$nim1\Delta$:: $kanMX6$ leu1-32 h+	lab collection
JM488	skb1-3GFP::kanR h-	This study
JM496	kanR-P41-nmt1-GFP-cdr1 ULA- h-	This study
JM497	kanR-P81-nmt1-GFP-cdr1 ULA-	This study
JM499	skb1-3GFP::kanR cdr2-mCherry::natR ade6-M216	This study
JM504	skb1-3GFP::kanR cdr2∆::ura4+ ura4-D18	This study
JM548	kanR-P41nmt1-GFP-wee1 leu1-32 ura4-D18 h-	This study
JM554	$cdr2\Delta$::kanR h-	lab collection
JM570	$cdr1\Delta$::natR h-	This study
JM618	cdc25-22 pom1∆∷ura4-D18 ura4-D18	lab collection
JM623	$cdr2$ -mEGFP:: $kanR$ $skb1\Delta$:: $ura4$ + $ura4$ -D18 $leu1$ -32 $ade6$ -M21X	This study
JM636	$skb1\Delta$:: $ura4+ cdr1\Delta$:: $natR$ $ura4-D18$	This study
JM673	cdr2-mEGFP::kanR leu1-32 h-	This study
JM777	wee1∆::ura4+ ura4-D18 leu1-32 h-	lab collection
JM837	leu1-32 h-	lab collection
JM906	$skb1\Delta$:: $kanMX6 h+$	This study
JM909	$skb1\Delta$:: $ura4+ura4-D18$ $leu1-32$ $h+$	This study
JM918	$nifl\Delta::natR h+$	This study
JM923	$cdc25$ -22 $skb1\Delta$:: $kanR$	This study
JM937	pom1A::kanMX6	lab collection
JM963	$cdc25$ -22 $nifl\Delta$:: $natR h$ +	This study
JM964	$cdc25$ -22 $nifl\Delta$:: $natR$ $skbl\Delta$:: $kanR$ h +	This study
JM1005	$skb1$ - $3GFP$:: $kanR pom1\Delta$:: $ura4$ + $ura4$ - $D18$	This study
JM1006	$skb1$ - $3GFP$:: $kanR$ $tea1\Delta$:: $ura4$ + $ura4$ - $D18$	This study
JM1691	$cdc25$ -22 $skb1\Delta$:: $kanR$ $pom1\Delta$:: $ura4$ -D18 h +	This study
JM1721	$skb1\Delta::natR h$ -	This study
JM1862	$skb1\Delta$::natR pom1 Δ ::ura4+ ura4-D18	This study
JM1872	$skb1\Delta$::natR cdr2 Δ ::ura4+ ura4-D18	This study
JM1932	skb1-3GFP::natR pAct1-Lifeact-mCherry::leu+	This study
JM1974	skb1-GBP-mCherry::hphR h+	This study
JM1995	cdr2-mEGFP::kanMX6 skb1-GBP-mCherry::hphR h+	This study
JM2025	skb1(E422,431A)-3GFP::kanR ura4-D18 leu1-32 h+	This study
JM2072	$cdr2\Delta$:: $ura4+ura4-D18\ leu1-32\ h+$	lab collection
JM2325	skb1-mEGFP::kanR h-	This study
JM2337	skb1-mEGFP-caax::natR h-	This study
JM2399	skb1-mEGFP-caax::natR cdr2-mCherry::natR	This study
JM2622	pom1-tdTomato::natR skb1-mEGFP-caax::natR ura4-D18	This study

JM2624	$skb1\Delta::natR$ wee1-50	This study
JM2625	$nifl\Delta::natR \ leu1-32$	This study