
Supplementary Table 11. Phenotypes of Shn-2 KO mice and abnormalities associated with schizophrenia.

Schizophrenia (1, 2, 3) Shn-2 KO mice

Positive Signs/Symptoms: Psychomotor agitation Increased locomotor activity

Social withdrawal Decreased interaction with a juvenile conspecific,
decreased preference for social novelty

Self neglect Decreased nest building behavior

Decreased working memory Impaired performance in 8-arm radial maze working memory task,
impaired working memory in T-maze task

Deficits in attention/sensorimotor gating Decreased sensorimotor gating (PPI deficits)

Inflexibility Normal performance in reversal learning in T-maze left-right discrimination

Decreased pain sensitivity Decreased pain sensitivity (5)

Lack of activity, depressive mood Increased depression-like behavior in sucrose preference test,
Decreased depression-like behavior in forced swim test and tail suspension test (7)

High prevalence of anxiety disorder/symptomatology (16) Increased anxiety-related behaviors (4),
Increased stay time on open arms in the elevated plus maze (14)

Increased sensitivity to NMDAR antagonist Increased sensitivity to MK-801

Reduction of psychotic agitation by haloperidol (17) Reduction of increased locomotor activity by haloperidol

No improvement of PPI by haloperidol (18) Improvement of PPI by haloperidol

Reduction of aggression by clozapine (19) Reduction of increased locomotor activity by clozapine

Improvement of PPI by clozapine (20) No improvement of PPI by clozapine

Poor bilateral transfer (21) Improved motor coordination in the Rotarod test

Hypercortisolemia (22) Hypercortisolemia

Lower body mass index (BMI) (23),
no significant BMI difference in male (24), higher BMI in women (24)

Decreased body weight

Physiology (EEG) Increased delta (25, 26), theta (25) power, Decreased alpha (25, 26), increased
gamma power (27), decreased gamma power (28)

Increased Theta wave, decreased Gamma wave

Cortical Thickness Reduction in frontal lobe and temporal cortex (29), normal (20) Decreased cortical thickness in PrL and V1

Cortical Cell density Increase (50, 51), decrease (52, 53), normal (27, 31) Decrease

Hippocampus Volume Decrease in bilateral volume (32), Decrease in total volume (33) Tendency to be large (data not shown)

Parvalbumin Decrease in hippocampus (34) , PFC (35) Decreased  in hippocampus , PFC

GAD67 Decrease in hippocampus (36), increase in DLPFC (37) Decreased in hippocampus

Myelination/oligodendrocyte Decreased CNPase (40), decrease myeline water fraction (5) Decreased CNPase, MBP was decreased

Astrocytes Increased  GFAP (39, 47), increased S100beta (41, 42, 43, 44)
decreased GFAP (38)

Increased GFAP, increased S100beta

Microglia Increased activated microglia (45), microglia activation (46), No significant change in Iba-1 expression

Decreased D1R in prefrontal (48) Decreased D1R binding in dentate gyrus

Increased D2R in striatum (49) No significant change in D2R binding
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