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SUPPLEMENTAL MATERIALS AND METHODS

Reagents

In vitro kinase activities were performed by Millipore KinaseProfiler.

Cell viability

For 2, 3-bis[2-methoxy-4-nitro-5-sulfophenyl]-2H-tetrazolium-5-carboxanilide (XTT) assays,
five thousand cells were plated in 96-well plates. The next day, vehicle (DMSO) or drug was
added by serial dilution. Four days later, media were aspirated, XTT solution (0.3 mg/ml of
XTT (Sigma), 2.65 ug/ml N-methyl dibenxopyrazine methyl sulfate (Sigma) in phenol red-free
media) was added, and the plates were incubated at 37°C for 1-2 hours. Metabolism of XTT was
quantified by measuring the absorbance at 450 nm. 1Csos were calculated using linear
interpolation. For clonogenic survival assays, three hundred cells were plated per 60 mm tissue
culture dish. The cells were allowed to attach overnight and then treated with vehicle or drug for
14 days. Colonies were fixed and stained with crystal violet (0.1% crystal violet in 95%
ethanol). All conditions were measured in triplicate and each experiment was done in duplicate
or triplicate.

Necrosis

To determine necrosis, media and cells were collected following drug treatment, centrifugated,
and resuspended in 0.4% trypan blue (Invitrogen). Live and dead cells were counted on a
hematocytometer.

Quantitative real-time PCR

Total RNA was extracted from cells (TRIzol, Invitrogen) as per manufacturer’s directions. Total

RNA (1.5 ug) was reversed transcribed with random hexamers and MMLV-RT. Power SYBR



Green PCR reactions were performed in triplicate for each sample and analyzed using the ABI
Prism 7900HT sequence detection system. Data were normalized to TBP levels.
Primers

ARNT/HIF-1f

Forward: 5’-CTGCCAACCCCGAAATGACAT-3
Reverse: 5’-GCCGCTTAATAGCCCTCTGG-3’
GLUTI/SLC2AL1:

Forward: 5’-GGCCAAGAGTGTGCTAAAGAA-3’
Reverse: 5’-ACAGCGTTGATGCCAGACAG-3’
GLUT2/SLC2A2:

Forward: 5’-GTCACTGGGACCCTGGTTTTC-3’
Reverse: 5’-AGTTGTTGATAGCTTTTCGGTCA-3’
HKI:

Forward: 5’-TGGCCTATTACTTCACGGAGC-3’
Reverse: 5’-GGAATGGACCTTACGAATGTTGG-3°
HK2:

Forward: 5’-TTTGACCACATTGCCGAATGC-3’
Reverse: 5’-GGTCCATGAGACCAGGAAACT-3’
PAI-1/Serpinel:

Forward: 5’-CATCCCCCATCCTACGTGG-3’
Reverse: 5’-CCCCATAGGGTGAGAAAACCA-3’
PDK:

Forward: 5’-CTGTGATACGGATCAGAAACCG-3’



Reverse: 5>-TCCACCAAACAATAAAGAGTGCT-3’
PGK:

Forward: 5’-CCTGGGCGGAGCTAAAGTTG-3’
Reverse: 5’-TCTCAGCTTTGGACATTAGGTCT-3’
VEGEF:

Forward: 5’-CAACATCACCATGCAGATTATGC-3’

Reverse: 5’-CCCACAGGGATTTTCTTGTCTT-3’
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Fig. S1. STF-31 does not induce autophagy, apoptosis, or DNA damage.

(A) Western blot of VHL in RCC4, RCC4/VHL, 786-0, 786/VHL, ACHN, and ACHN shVHL cells. a-tubulin
is used as a loading control. (B) Structure of STF-31 and a STF-31 analog with a linker. (C) XTT validation of
STF-31, which was identified from chemical synthetic lethal screen of renal carcinoma cells that have lost
VHL. Cells were treated for 4 days. All error bars represent the standard error of the mean (n=3)(*p<0.0005).
(D) RCC4 and RCC4/VHL cells were treated with increasing concentrations of STF-31 (1.25, 2.5 and 5 uM), a
negative control (DMSO) and a positive control (STF-62247). Cells were lysed and probed for LC3, a marker
of autophagy, or a-tubulin (loading control). (E) RCC4 and RCC4/VHL cells were treated with vehicle,
increasing concentrations of STF-31, and camptothecin. Cells were stained with DAPI and nuclear condensa-
tion was examined by fluorescence microscopy. (F) RCC4 cells were treated with STF-31 (5 uM) for the
indicated time and stained with Annexin V and propidium iodide and subjected to FACS analysis. (G) RCC4
and RCC4/VHL cells were subjected to increasing concentrations of STF-31 (1.25, 2.5, and 5 uM), a negative
control (DMSO), and a positive control (doxorubicin). Cells were lysed and subjected to Western blot with the
indicated antibodies.
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Fig. S2. Hexokinase and other glucose transport inhibitors do not affect VHL-deficient cell survival.
(A) Relative mRNA expression levels for different genes involved in glucose metabolism in RCC4 cells
relative to RCC4/VHL cells. (B) Clonogenic survival of RCC4 and RCC4/VHL cells grown in the presence
of fasentin. (C) XTT assay of RCC4 and RCC4/VHL cells grown in the presence of phloretin. (D) Clono-
genic survival of RCC4 and RCC4/VHL cells grown in the presence of bromopyruvate. (E) Clonogenic
survival of RCC4 and RCC4/VHL cells grown in the presence of clotrimazole. (F) Clonogenic survival of

RCC4 and RCC4/VHL cells grown in the presence of lonidamine. All error bars represent the standard error
of the mean (n=3).
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Fig. S3. GLUT1 protein levels are unaffected by STF-31.

(A) Quantitative RT-PCR confirming knockdown of HIF-1 in RCC4 cells, following transfection with indicated
siRNA. (B) Immunofluorescence staining of GLUT1, GLUT2, or GLUT3 in RCC4 or RCC4/VHL cells, demon-
strating high levels of GLUT1 in RCC4, high levels of GLUT2 in RCC4/VHL cells, and low expression of GLUT3
in both RCC4 and RCC4/VHL cells. (C) GLUTI protein levels in cells treated with STF-31 (5 uM) for the indi-
cated time (left panel). GLUT]1 protein levels with increasing concentrations (1.25, 2.5, 5 or 10 uM) of STF-31.
Cells were treated for 3 days (right panel). (D) RCC4 and RCC4/VHL cells were fractionated into soluble and
insoluble fractions, following treatment with STF-31 for the indicated times. Fractions were then probed for GLUTI
protein. (E) XTT assay of RCC4 and RCC4/VHL cells grown in the presence of 2-deoxyglucose. (F) Clonogenic
survival assay of RCC4 and RCC4/VHL cells grown in the presence of 2-deoxyglucose. (G) Representative photos
of mouse red blood cells were treated with vehicle, soluble STF-31 analog (2.5 uM or 5 uM), or red blood cell lysis
buffer. (H) Representative cranial cross section of a mouse prior to treatment (left) and following three daily 1i.p.
injections with a soluble STF-31 analog (11.6 mg/kg)(right), overlaid with CT scan. (I) ACHN tumors with wild-
type VHL are insensitive to soluble STF-31 analog treatment. ACHN cells were implanted subcutaneously into the
flanks of immunocompromised mice. Once tumors reached an average of >20 mm3, mice were treated daily with
3-series (7.8 mg/kg) or vehicle. All error bars represent the standard error of the mean.



Abl 108 IRAK1 105
AMPK 92 JAK2 113
ASK1 129 JNK1a1 101

Aurora-A 108 MAPKAP-K2 87

Axl 87 MEK1 99

CaMKiI 87 Met 105
CDK1/cyclinB 926 MKK4 128
CDKe6/cyclinD3 105 MLK1 97
CHK1 114 MSK1 107
CK1y1 85 mTOR 101
cKit(D816H) 99 NEK2 103

CSK 99 PAK2 97
c-RAF 103 PDK1 105
¢SRC 104 PI3K 97
DAPK1 92 Pim-2 112
DYRK2 94 PKA 96
EphAT 102 PKBa 99
FGFR1 107 PKC& 116

FIt3 111 Plk3 104

Fyn 91 ROCK-I 74
GSK3a 134 Rsk1 120

Hck 84 SAPK2a 127
IGF-1R 108 Syk 94
IKKa 102 Tie2 111

IR 121 TrkA 124

Table S1. STF-31 does not inhibit a broad range of kinases.




Vehicle 3-series

WBC 3818 55+0.6
RBC 82+1.1 8.1+0.7
Hemoglobin 123 £1.5 121 £1.1
Hematocrit 30.6 4.7 384 +3.7
MCV 496+1.0 47.6 £2.1
MCH 154 +0.1 15.1+£0.7
MCHC 31.0+£0.7 31.6+£0.2
Neutrophils 36.8 +14.3 66.2 +14.3
Lymphocytes 57.8+16.8 26.2 £ 14.5
Monocytes 52+34 6.0+ 3.1
Absolute Neutrophils 1372.0 £902.5 3599.8 +702.8
Absolute Lymphocytes 2241.8 £1169.1 1475.6 £871.9
Absolute Monocytes 174.2 £105.6 322.0+147.2

Table S2. Complete blood counts from control- and STF-31-treated mice (10 days).
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