Supporting Information for:

Effects of N^2 -Alkylguanine, O^6 -Alkylguanine, and Abasic Lesions on DNA Binding and Bypass Synthesis by the Euryarchaeal B-family DNA Polymerase Vent (exo⁻)

Seonhee Lim,^{†,‡} Insil Song,[†] F. Peter Guengerich,[§] and Jeong-Yun Choi^{†,*}

Division of Pharmacology, Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Gyeonggi-do 440-746, Republic of Korea; Department of Pharmacology, School of Medicine, Ewha Womans University, Seoul 158-710, Republic of Korea; Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, USA

Table of Contents

Figure S1.	mer DNA by electrophoretic mobility shift assays	2
Figure S2.	Comparison of the relative efficiencies of single nucleotide incorporation opposite various template DNA lesions by Vent (exo ⁻) and Dpo4	3

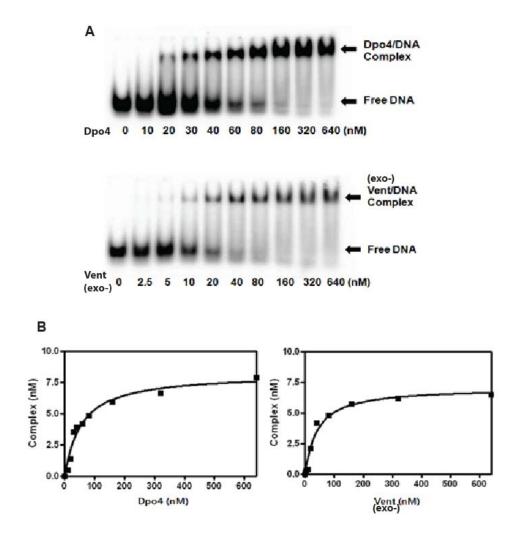
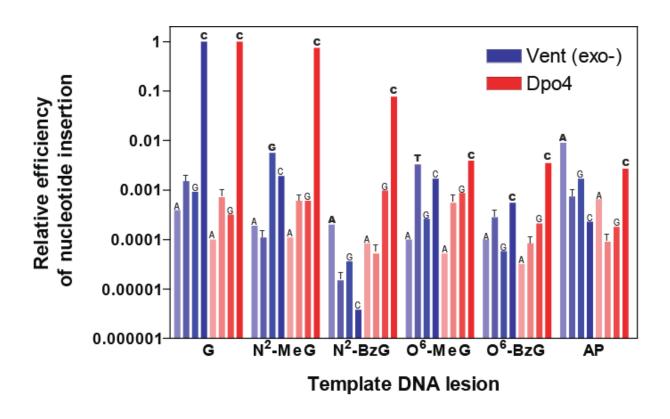



Figure S1. Estimation of the apparent K_d^{DNA} for Dpo4 and Vent (exo) to 24-mer/36-G-mer DNA by electrophoretic mobility shift assays. (A) Representative gels of electrophoretic mobility shift assays with Vent (exo) and Dpo4. Reactions containing 5'-[32 P]-labeled 24-mer/36-G-mer primer-template duplex DNA (10 nM) were incubated with increasing concentrations of each polymerase (0 - 640 nM). The binary complex was separated from the unbound DNA substrate by 4% non-denaturing polyacrylamide gel electrophoresis. (B) Plot of binary complex formation (Pol•24-mer/36-G-mer primer-template) versus polymerase concentration was fit to a quadratic equation, as described in the Experimental Procedures section. The following values of K_d were estimated: Vent (exo), 39 ± 8 nM; Dpo4, 52 ± 9 nM.

Figure S2. Comparison of the relative efficiencies of single nucleotide incorporation opposite various template DNA lesions by Vent (exo) and Dpo4. Relative efficiencies (Tables 2 and 3) of single dNTP incorporation opposite each of DNA lesions by Vent (exo) (blue bars) and Dpo4 (red bars) are represented in the bar graph. Each single nucleotide (dATP, dTTP, dGTP, or dCTP) insertion is represented by A, T, G, and C on top of each bar, and the most efficiently inserted nucleotide is shown in bold.