

Supplementary Figure 1. Mutation in PTPN6 does not affect the accumulation of cells in non-skin draining LNs. Total numbers (mean \pm s.e.m.) of cells in the mesenteric LNs (MLNs) of 14-16 week old WT (n = 4) and *Ptpn6^{spin}* (n = 4) mice that previously developed footpad disease. Data are representative of two independent experiments. Tregs refers to Foxp3 expressing CD4⁺ T cells.

Supplementary Figure 2. *Ptpn6^{spin}* mutation results in enhanced numbers of circulating myeloid cells and neutrophils in the blood. Total numbers (mean \pm s.e.m.) of circulating immune cells in equal volumes of peripheral blood from 12-16 week old WT (n = 5) and *Ptpn6^{spin}* (n = 5) mice that previously developed footpad disease. Data are representative of two independent experiments. PBL, peripheral blood leukocytes. DCs, dendritic cells. NK, natural killer.

Supplementary Figure 3. The inflammatory environment in *Ptpn6*^{spin} mice promotes the generation of pathogenic T cells. PopLNs were harvested from 10-12 week old WT and diseased *Ptpn6*^{spin} mice and cells were restimulated with PMA/ionomycin followed by intracellular staining for IL-17 and IFN- γ . Representative FACs plots that correspond to the data presented in Figure 1f are shown. Data are representative of 5 independent experiments with at least 3-4 mice per group.

Supplementary Figure 4. T cells exhibit an effector/memory phenotype in diseased *Ptpn6^{spin}* **mice.** Expression of CD44 and CD62L by CD4⁺ and CD8⁺ T cells from the popLNs of WT and diseased *Ptpn6^{spin}* mice. Representative FACs plots from 5 independent experiments with at least 3-4 mice per group.

Supplementary Figure 5. Young *Ptpn6*^{spin} mice are characterized by normal numbers of immune cells. a-b, Cells were harvested from WT and disease-free *Ptpn6*^{spin} mice (4-8 weeks old). a, Numbers (mean \pm s.e.m.) of popLN cells and b, production of cytokines by CD4⁺ (left panel) and CD8⁺ T cells (right panel) following brief restimulation. c, Total numbers (mean \pm s.e.m.) of circulating immune cells in equal volumes of peripheral blood from 4-7 week old WT and *Ptpn6*^{spin} mice. PBL, peripheral blood leukocytes. DCs, dendritic cells. NK, natural killer.

Supplementary Figure 6. PTPN6 mutation does not influence T cell development or peripheral T cell activation status before the onset of footpad disease. a-d, Thymic development was assessed in 4-7 week old WT and disease-free *Ptpn6^{spin}* mice. Representative FACs plots (a) and combined data (n = 3-4 mice per genotype) (b) of thymic development based on CD4 and CD8 staining. c, Total numbers (mean \pm s.e.m.) of thymocytes in each stage of thymic development (n = 3-4 mice per genotype). DN, double negative (CD4⁻ CD8⁻); DP, double positive (CD4⁺ CD8⁺); CD4, CD4 single positive (CD4⁺ CD8⁻); CD8, CD8 single positive (CD4⁻ CD8⁺). d, Representative negative selection staining of double negative thymocytes. e-f, Analysis of the peripheral T cell compartment in 4-7 week old WT and disease-free *Ptpn6^{spin}* mice (n = 3-4 mice per genotype). e, Frequencies of CD4⁺ T cells that express Foxp3 in the spleen and popliteal lymph nodes (popLN). f, Expression of CD44 and CD62L by CD4⁺ T cells. All data are presented as mean \pm s.e.m. Data are representative of 3 independent experiments.

Supplementary Figure 7. PMA/ionomycin-induced cytokine secretion is not augmented in disease-free *Ptpn6*^{spin} mice. a-b, Popliteal lymph node cells (a) and splenocytes (b) from WT and young *Ptpn6*^{spin} mice (n = 3-4 mice per genotype) were stimulated with PMA/ionomycin for 24 hrs and the secretion of cytokines was measured by ELISA.

Supplementary Figure 8. Deletion of IL-1 α abrogates cutaneous inflammatory disease in *Ptpn6^{spin}* mice. a-b, Footpad images (a) and H&E sections (b) of WT and *Ptpn6^{spin}* mice that were crossed with mice that are deficient in either NLRP3, Caspase-1, IL-1 β , or IL-1 α . Representative images and sections are shown.

Supplementary Figure 9. Deletion of TLR4 does not provide protection against *Ptpn6^{spin}*-mediated disease. **a**, Incidence of spontaneous inflammatory footpad disease in WT, *Ptpn6^{spin}*, and *Ptpn6^{spin}*x*Tlr4^{-/-}* mice over time. **b**, Serum cytokine levels in WT and *Ptpn6^{spin}*x*Tlr4^{-/-}* mice at 10-14 weeks of age.

Supplementary Figure 10. IL-1 α deficiency protects *Ptpn6*^{spin} mice from footpad pathology. **a**, Representative footpad images of microabrasion mice at 3-4 weeks post wound induction. **b**, Footpad H&E sections at 3-4 weeks post microabrasion wound induction were scored based on the extent and severity of inflammation, ulceration, and hyperplasia of the mucosa in a blinded fashion by a veterinary pathologist. Each point represents an individual mouse, and the line represents the mean \pm s.e.m. Data are combined from two independent experiments.

Supplementary Figure 11. PTPN6 mutation does not influence neuroinflammation during EAE. a-c, WT and disease-free (4-7 weeks of age) $Ptpn6^{spin}$ mice were immunized with MOG/CFA and leukocytes from the spinal cord were harvested on day 20. a, Frequencies of neutrophils (CD11b⁺ Gr-1⁺ cells) in the CD45⁺ population. b, Spinal cord cells were stimulated for 48 hrs with MOG peptide and granulopoietic cytokines were measured by ELISA. c, Numbers (mean \pm s.e.m.) of cells in the spinal cord at day 20. Data are representative of two independent experiments with at least 3-4 mice per group. Data show mean \pm s.e.m.

Supplementary Figure 12. Commensal skin bacteria composition is not altered in Ptpn6^{spin} mice. a-b, Levels of total bacteria (a) and specific bacterial species (b) in the skin of WT and diseased *Ptpn6^{spin}* mice (12-16 weeks of age). The bar graphs show mean ± s.e.m.

Supplementary Figure 13. *Ptpn6^{spin}*-mediated inflammatory disease is not transferrable to WT mice. WT mice were singly housed or co-housed at a 1:1 ratio with *Ptpn6^{spin}* mice immediately following birth. The levels of serum cytokines and chemokines were determined in mice at 10-16 weeks of age. Each point represents an individual mouse, and the line represents the mean \pm s.e.m. **P* < 0.05, ***P* < 0.01, ****P* < 0.001. n.s., not statistically significant. Data are representative of two independent experiments.

Supplementary Figure 14. *Ptpn6^{spin}* mutation in the haematopoietic compartment causes neutrophilia. a-c, Bone marrow chimera mice (donor>>recipient) were generated and the levels of circulating neutrophils in the blood was determined. Representative FACs plots (a) and combined data (n = 3-4 mice per chimeric group) (b) depicting the frequencies of circulating cells in the blood that are CD11b⁺ Gr-1⁺ neutrophils. c, Enumeration of circulating neutrophils in equal volumes of blood.

Supplementary Figure 15. Macrophage-mediated production of proinflammatory cytokines is not affected by PTPN6 mutation. a-b, Bone marrow derived macrophages (BMDMs) were stimulated with either LPS followed by ATP (a) or *Salmonella typhimurium* (5 MOI) (b) for 4 hr and supernatants were collected to evaluate cytokine secretion by ELISA. The bar graphs show mean \pm s.e.m. of triplicate wells. Data are representative of four independent experiments.

Supplementary Figure 16. PTPN6 mutation in neutrophils results in slightly higher levels of proinflammatory cytokine secretion. Purified WT and *Ptpn6*^{spin} neutrophils were isolated via flow cytometry sorting. Neutrophils were stimulated with LPS for 48 hrs and cytokine secretion was measured by ELISA. The bar graphs show mean \pm s.e.m. of triplicate wells. Data are representative of three independent experiments.

Supplementary Figure 17. Genetic ablation of RIP1 limits *Ptpn6^{spin}*-**mediated skin disease**. Representative footpad images of WT (*Ptpn6^{WT}xRip1^{+/+}* >> WT), *Ptpn6^{spin}xRip1^{+/+}* (*Ptpn6^{spin}xRip1^{+/+}* >> WT), and *Ptpn6^{spin}xRip1^{-/-}* (*Ptpn6^{spin}xRip1^{-/-}* >> WT) fetal liver transplant mice (donor>>recipient).

Supplementary Figure 18. Inhibition of NF- κ B and ERK signalling rescues aberrant cytokine production in *Ptpn6*^{spin} mice. WT mice were pretreated with vehicle control (n = 11-26) and *Ptpn6*^{spin} mice were pretreated with vehicle control (n = 14-26), 150 µg of SC-514 (n = 10) (**a**) or 75 µg of U0126 (n = 7) (**b**) for 1 hour before microabrasion injury induction. Serum levels of granulopoiesis-inducing factors 5 hrs post wound induction. The bar graphs show mean \pm s.e.m. *P < 0.05, **P < 0.01, ***P < 0.001.

Supplementary Figure 19. RIP1-mediated regulation of inflammation in *Ptpn6^{spin}* mice is not through its regulation of RIP3-induced necroptosis. Microabrasion injuries were induced on the plantar surfaces of the footpads of WT, *Ptpn6^{spin}*, and *Ptpn6^{spin}xRip3^{-/-}* mice. Representative footpad images of mice at 4 weeks post wound induction are depicted.