Support The Information of the I

Liebrand et al. 10.1073/pnas.1220015110

SI Materials and Methods

Plant Growth Conditions. Nicotiana benthamiana, N. benthamiana: Cf-4 (1), and Nicotiana tabacum were grown under 16 h of light at 25 °C and 8 h of darkness at 21 °C in climate chambers with a relative humidity of ∼75%. Arabidopsis, tomato (Solanum lycopersicum) cultivar (cv.) Money Maker (MM) and cv. Motelle, as well as $Cf₁2.2- (2)$ and $Cf₂4 (Hcr₉-4D)$ -transgenic MM plants (3) were grown in the greenhouse under 16 h of light at 21 °C and 8 h of darkness at 19 °C. The relative humidity in the greenhouse was ∼75%.

Plant Transformations. Plasmid pBIN-KS-35S::Cf-4–eGFP (Sol 2701) (4) was used for transformation of tomato MM–Cf-0, which does not carry a functional Cf-4 gene. Transformations were performed as described (5). By using a quantitative RT-PCR (qRT-PCR)–based method (6), plants carrying only single- or two-copy transgenes were selected. To test for the presence of functional Cf-4, leaflets of transgenic tomato plants were infiltrated with apoplastic fluid from leaflets of a MM–Cf-0 plant colonized by an Avr4-secreting strain of Cladosporium fulvum by using a syringe without needle. Arabidopsis mutant Columbia 0 (Col-0) suppressor of bir1-1 (sobir1) (7) was transformed with p35S::Ve1 as described (8). Four homozygous single insert lines expressing Ve1 were selected based on segregation and qRT-PCR analysis and used in Verticillium dahliae disease assays.

Binary Vectors for Agrobacterium tumefaciens-Mediated Transient Transformation. Sequences of primers and corresponding targets can be found in Table S4. Construction of plasmids containing Cf-2.2, -4, -4E, -9, Peru2, and Ve1, C-terminally fused to either eGFP or the Myc epitope-tag, has been described (4, 9). S. lycopersicum Flagellin Sensing 2 (SlFLS2)–GFP was expressed from pCAMBIA2300–FLS2p::SlFLS2–GFP (10). For novel constructs, coding regions were amplified from cDNA. PCR fragment S. lycopersicum Somatic Embryogenesis Receptor Kinase 3a (SlSERK3a)/BAK1 was cloned in pDONR201 by using Gateway BP Clonase II (Invitrogen). Fragments SISERK1, SIEIX2, SISOBIR1, SISOBIR1-like, and Arabidopsis thaliana (At)SOBIR1 were cloned in pENTR/D-Topo (Invitrogen). Plasmid pENTR/ D-Topo containing A. thaliana Clavata1 (AtCLV1) has been described (11). To generate mutations in the SOBIR1 kinase domain, pENTR/D-Topo vectors containing SISOBIR1, SISOBIR1-like, and AtSOBIR1 coding regions were PCR-amplified with primers introducing a mismatch nucleotide to generate a D to N codon change. After amplification, the methylated parental plasmid was digested by using DpnI. All pDONR201 and pENTR/D-Topo clones were sequenced, and subsequently fragments were transferred to the binary transformation vector pBIN-KS-35S:: GWY–eGFP (Sol 2095; for C-terminally tagging with eGFP) or pGWB20 (12) (for C-terminally tagging with the Myc epitope), by using Gateway LR Clonase II (Invitrogen). This process resulted in plasmids pBIN-KS-35S::At-CLV1–eGFP (Sol 2824), pBIN-KS-35S::Sl-CLV2–eGFP (Sol 2782), pBIN-KS-35S::Sl-EIX2–eGFP (Sol 2863), pBIN-KS-35S::Sl-Suppressor of Non-expressor of pathogenesis-related genes 1-1 (Npr1-1), Constitutive 2 (SNC2)– eGFP (Sol 3109), pBIN-KS-35S::Sl-Too Many Mouths (TMM)– eGFP (Sol 3110), pBIN-KS-35S::Sl-SOBIR1–eGFP (Sol 2774), pGWB20-Sl-SOBIR1–Myc (Sol 2754), pGWB20-Sl-SOBIR1-like– Myc (Sol 2752), pGWB20-At-SOBIR1–Myc (Sol 2849), pGWB20- Sl-SOBIR1D473N–Myc (Sol 2878), pGWB20-Sl-SOBIR1-like D486N–Myc (Sol 2879), and pGWB20-At-SOBIR1D489N-Myc (Sol 2880). Avr4 was expressed from pMOG800–Avr4 and

Liebrand et al. <www.pnas.org/cgi/content/short/1220015110> 1 of 8

Avr9 from pMOG800–Avr9 (13). GFP–HA was expressed from pBIN61–GFP–HA (14). All binary plasmids were transformed to A. tumefaciens strain C58C1, carrying helper plasmid pCH32. Infiltration of *Agrobacterium* into plant leaves (agroinfiltration) was performed as described at $OD_{600} = 1$, unless indicated otherwise (13).

Protein Identification by Immunopurification, Followed by Tryptic Digest and Mass Spectrometry. Immunopurifications from tomato and N. benthamiana were essentially performed following the described protocol with minor modifications (4). For immunopurifications from the transgenic tomato lines expressing Cf-4–eGFP, young, not fully expanded leaves of 6-wk-old plants were taken. Proteins were extracted by using extraction buffer [EB; 150 mM NaCl, 1% IGEPAL CA-630 (Nonidet P-40), 50 mM Tris, pH 8, plus one tablet of protease inhibitor mixture (Roche) per 50 mL of EB]. To 1 g of leaf material (fresh weight), 2 mL of EB was added. Subsequently, a total protein extract of 10 mL was subjected to immunopurification by adding 60 μ L (50% slurry) of GFP TrapA beads (Chromotek) and incubation while shaking for 1 h (4). Beads were then washed five times with EB. Tryptic on-bead digestion was followed by mass spectrometry by using either the Synapt MS (Waters) or the Orbitrap XL (Thermo Scientific) (4).

Coimmunopurifications and Immunoblotting. Coimmunopurifications were performed as described (4). Two milliliters of protein extract was incubated for 1 h with 15 μL of GFP_TrapA beads (50% slurry), and beads were washed five times with EB. Protein blots were developed by using either α-GFP–HRP (130-091-833; MACS Antibodies) or α-cMyc (cMyc 9E10, sc-40; Santa Cruz) with α-mouse– HRP (Amersham) as a secondary antibody.

Confocal Microscopy. Confocal microscopy was performed on agroinfiltrated N. benthamiana leaves as described (4).

Generation of Virus-Induced Gene Silencing Constructs. Fragments to be used for virus-induced gene silencing (VIGS) were PCR amplified from N. benthamiana or tomato cDNA (Table S4). All fragments were cloned into pCR4-TOPO (Invitrogen) and sequenced. The tomato fragments were then excised from pCR4-TOPO by using restriction enzymes XbaI and BamHI and cloned into pTRV2: RNA2 (pYL156) (15) that was linearized with the same enzymes, to generate pTRV2:SlSOBIR1 (Sol 2756), pTRV2:SlSOBIR1-like (Sol 2755), and pTRV2:SlSOBIR1/SlSOBIR1-like (Sol 2779). Fragment NbSOBIR1 was excised from pCR4-TOPO by using enzymes EcoRI and BamHI and cloned into pTRV2:RNA2, linearized with the same enzymes, to generate pTRV2:NbSOBIR1 (Sol 2850). VIGS fragment NbSOBIR1-like was excised from pCR4-TOPO by using BamHI and XhoI and cloned into pTRV2: RNA2, linearized with the same enzymes, to generate pTRV2: NbSOBIR1-like (Sol 2851). Fragment NbSOBIR1-like was also cloned into Sol 2850, linearized with BamHI and XhoI, to generate pTRV2:NbSOBIR1/NbSOBIR1-like (Sol 2854).

VIGS in N. benthamiana and Tobacco and Hypersensitive Response Assays. VIGS experiments in N. benthamiana: Cf-4, wild-type N. benthamiana, and N. tabacum cv. Samsun were performed as described (4, 9). In brief, 4-wk-old plants were inoculated by agroinfiltration with pTRV:RNA1 and pTRV:RNA2 (15). TRV:Cf-4 (16), TRV:Enhanced Disease Susceptibility 1 (EDS1) (9), TRV:βglucuronidase (GUS) (17), TRV:GFP (18), and TRV:Phytoene desaturase (PDS) (15) were included as controls.

For hypersensitive response (HR) assays, 3 wk after virus inoculations, mature leaves were agroinfiltrated to individually express Avr4 at $OD_{600} = 0.03$ (1), RxD460V [pB1-Rx (AT39-H1; D460V)] (19) at $OD_{600} = 0.1$, Bcl2-Associated protein X (BAX) (20) at $OD_{600} = 0.5$, and Peru2–eGFP at $OD_{600} = 1$. For complementation analysis with AtSOBIR1–Myc and the respective D489N kinase mutant, constructs driving expression of these proteins, in addition to GUS, were coexpressed with Avr4 ($OD₆₀₀ = 0.03$) at an OD₆₀₀ of 0.5, in N. benthamiana: Cf-4. In tobacco, Ve1 (pMOG800-Ve1) (6) and Ave1 (pFAST–Ave1) (9) were transiently coexpressed in leaf sections at an OD_{600} of 2 for each construct. Three days after agroinfiltration, leaves were examined for development of an HR.

RNA Extraction, cDNA Synthesis, and qRT-PCR Analysis. For qRT-PCRs, RNA was isolated from N. benthamiana inoculated with the various TRV constructs. For RT-PCRs, mature leaves of TRVinoculated plants were either agroinfiltrated with Cf-4–eGFP or Ve1–eGFP, or they were not transiently transformed. RNA extraction, cDNA synthesis, and qRT-PCR were performed as described (4). For RT-PCR analysis, the amount of cycles is indicated. The primer combinations used can be found in Table S4.

- 1. Gabriëls SHEJ, et al. (2007) An NB-LRR protein required for HR signalling mediated by both extra- and intracellular resistance proteins. Plant J 50(1):14–28.
- 2. Dixon MS, et al. (1996) The tomato Cf-2 disease resistance locus comprises two functional genes encoding leucine-rich repeat proteins. Cell 84(3):451–459.
- 3. Thomas CM, et al. (1997) Characterization of the tomato Cf-4 gene for resistance to Cladosporium fulvum identifies sequences that determine recognitional specificity in Cf-4 and Cf-9. Plant Cell 9(12):2209–2224.
- 4. Liebrand TWH, et al. (2012) Endoplasmic reticulum-quality control chaperones facilitate the biogenesis of Cf receptor-like proteins involved in pathogen resistance of tomato. Plant Physiol 159(4):1819–1833.
- 5. van Esse HP, et al. (2008) The Cladosporium fulvum virulence protein Avr2 inhibits host proteases required for basal defense. Plant Cell 20(7):1948–1963.
- 6. Fradin EF, et al. (2009) Genetic dissection of Verticillium wilt resistance mediated by tomato Ve1. Plant Physiol 150(1):320–332.
- 7. Gao M, et al. (2009) Regulation of cell death and innate immunity by two receptorlike kinases in Arabidopsis. Cell Host Microbe 6(1):34–44.
- 8. Fradin EF, et al. (2011) Interfamily transfer of tomato Ve1 mediates Verticillium resistance in Arabidopsis. Plant Physiol 156(4):2255–2265.
- 9. Zhang Z, et al. (2013) Optimized agroinfiltration and virus-induced gene silencing to study Ve1-mediated Verticillium resistance in tobacco. Mol Plant Microbe Interact 26(2):182–190.
- 10. Robatzek S, et al. (2007) Molecular identification and characterization of the tomato flagellin receptor LeFLS2, an orthologue of Arabidopsis FLS2 exhibiting characteristically different perception specificities. Plant Mol Biol 64(5):539–547.
- 11. Frei dit Frey N, et al. (2012) Plasma membrane calcium ATPases are important components of receptor-mediated signaling in plant immune responses and development. Plant Physiol 159(2):798–809.
- 12. Nakagawa T, et al. (2007) Development of series of gateway binary vectors, pGWBs, for realizing efficient construction of fusion genes for plant transformation. J Biosci Bioeng 104(1):34–41.

VIGS in Tomato and C. fulvum and V. dahliae Disease Assays. Tomato was subjected to VIGS as described (4). For C. fulvum disease assays, tomato plants transformed with the $Hcr9-4D$ (Cf-4) or Cf-2.2 gene and fully resistant to a race 5 strain of C. fulvum (secreting both Avr4 and Avr2), were subjected to agroinoculation with various recombinant TRV VIGS constructs targeting SISOBIR1 (-like), Cf-4, or GUS. Nonagroinoculated MM-Cf-0 plants served as fully susceptible controls. For V . dahliae disease assays, tomato cultivar Motelle carrying the Ve1 gene and resistant to V. dahliae race 1 strains expressing Ave1, was used. TRV:Ve1 and TRV:GFP were used as controls. Four to six tomato plants were used per treatment in each experiment. Leaf canopy area measurements were performed as described (21), and for each plant the canopy area was calculated. The average canopy area of V. dahliaeinoculated plants, compared with control plants, was calculated for three independent biological repeats.

C. fulvum inoculations were performed as described (4). C. fulvum race 5–pGPD:GUS, constitutively expressing the GUS reporter gene, was used for inoculations (22) . \overline{V} . dahliae disease assays on tomato Arabidopsis, as well as quantification of V. dahliae biomass by qRT-PCRs, were performed as described (6, 8). V. dahliae race 1 strain JR2, expressing Ave1, was used in the various disease assays.

- 13. Van der Hoorn RAL, Laurent F, Roth R, De Wit PJGM (2000) Agroinfiltration is a versatile tool that facilitates comparative analyses of Avr9/Cf-9-induced and Avr4/Cf-4-induced necrosis. Mol Plant Microbe Interact 13(4):439–446.
- 14. Sacco MA, Mansoor S, Moffett P (2007) A RanGAP protein physically interacts with the NB-LRR protein Rx, and is required for Rx-mediated viral resistance. Plant J 52(1): 82–93.
- 15. Liu Y, Schiff M, Marathe R, Dinesh-Kumar SP (2002) Tobacco Rar1, EDS1 and NPR1/NIM1 like genes are required for N-mediated resistance to tobacco mosaic virus. Plant J 30(4):415–429.
- 16. Gabriëls SHEJ, et al. (2006) CDNA-AFLP combined with functional analysis reveals novel genes involved in the hypersensitive response. Mol Plant Microbe Interact 19(6): 567–576.
- 17. Tameling WIL, Baulcombe DC (2007) Physical association of the NB-LRR resistance protein Rx with a Ran GTPase-activating protein is required for extreme resistance to Potato virus X. Plant Cell 19(5):1682–1694.
- 18. Burch-Smith TM, Schiff M, Liu Y, Dinesh-Kumar SP (2006) Efficient virus-induced gene silencing in Arabidopsis. Plant Physiol 142(1):21–27.
- 19. Bendahmane A, Farnham G, Moffett P, Baulcombe DC (2002) Constitutive gain-offunction mutants in a nucleotide binding site-leucine rich repeat protein encoded at the Rx locus of potato. Plant J 32(2):195–204.
- 20. Lacomme C, Santa Cruz S (1999) Bax-induced cell death in tobacco is similar to the hypersensitive response. Proc Natl Acad Sci USA 96(14):7956–7961.
- 21. Santhanam P, Thomma BPHJ (2013) Verticillium dahliae Sge1 differentially regulates expression of candidate effector genes. Mol Plant Microbe Interact 26(2): 249–256.
- 22. Stulemeijer IJE, Stratmann JW, Joosten MHAJ (2007) Tomato mitogen-activated protein kinases LeMPK1, LeMPK2, and LeMPK3 are activated during the Cf-4/Avr4-induced hypersensitive response and have distinct phosphorylation specificities. Plant Physiol 144(3):1481–1494.

Table S1. Sequences and ProteinLynx scores of peptides specifically matching Solyc06g071810.1.1, Solyc03g111800.2.1, and Cf-4–eGFP, of a tryptic digest of Cf-4–eGFP immunopurified from transgenic tomato line TL3

SlSOBIR1, Solyc06g071810.1.1; SlSOBIR1-like, Solyc03g111800.2.1. Scores were identified by mass spectrometry using the Synapt MS.

Scores were identified by mass spectrometry of a tryptic digest of immunopurified Cf-4–eGFP.

*For identifications with ProteinLynx, peptides were matched on the translated tomato genome sequence. Because of the difference in sequence between SlSOBIR1 and NbSOBIR1 homologs, no distinction between NbSOBIR1 and NbSOBIR1-like can be made. Mascot identifications were based on translated tobacco EST sequences, and peptides can match either NbSOBIR1 or NbSOBIR1-like. When specifically matching to the corresponding N. benthamiana homolog, the protein name is indicated. When no distinction can be made, NbSOBIR1/SOBIR1-like is indicated. †

⁺Mascot ion scores are presented for the peptides that were identified on the Orbitrap XL.

ProteinLynx peptide ladder scores are presented for the peptides that were identified on the Synapt MS.

Scores were identified by mass spectrometry using the Orbitrap XL.

*Peptides were identified based on translated tobacco EST sequences and can match either NbSOBIR1 or NbSOBIR1-like. When specifically matching to the corresponding N. benthamiana homolog, the protein name is indicated. When no distinction can be made, NbSOBIR1/SOBIR1-like is indicated.

Table S4. Sequences of oligonucleotide primers used in this study

Fig. S1. Cf-4-eGFP is functional and efficiently immunopurified from stably transformed tomato and tomato S/SOBIR1-like and Arabidopsis AtSOBIR1 interact with Cf-4 and Ve1, but not with various receptor-like kinases (RLKs). (A) Leaflets of the transgenic lines TL3 and TL21, stably transformed with the Cf-4-eGFP gene under control of the 35S promoter, were infiltrated with apoplastic fluid obtained from leaflets of susceptible Money Maker–Cf-0 plants colonized by C. fulvum secreting Avr4. TL3 mounted an HR by 2 d after infiltration, in contrast to line TL21, which did not respond to the Avr4 infiltration. (B) Cf-4–eGFP is detectably immunopurified from TL3, but not from TL21. Total protein extracts were subjected to immunopurification by using GFP-affinity beads and total proteins (Input), and immunopurified proteins (IP) were subjected to SDS/PAGE and analyzed by immunoblotting using αGFP antibody. The Coomassie-stained blot shows the 50-kDa Rubisco band present in the input samples to confirm equal loading. (C) Tagged versions of Cf-4, Ve1, AtCLV1, S/SERK1, S/SERK3a/BAK1, and SIFLS2 (all fused to eGFP, except for SIFLS2, which was fused to GFP) were coexpressed with S/SOBIR1-like–Myc and AtSOBIR1–Myc in N. benthamiana. Total protein extracts of transiently transformed leaf tissue were subjected to immunopurification by using GFP-affinity beads. Total proteins (Input) and immunopurified proteins (IP) were subjected to SDS/PAGE and blotted. Blots were incubated with αGFP antibody to detect the immunopurified (e)GFP fusion proteins and incubated with αMyc antibody to detect coimmunopurifying SOBIR1–Myc proteins. Coomassie-stained blots showing the 50-kDa Rubisco band present in the input samples confirm equal loading. Representative results for three independent experiments are shown.

[Fig. S1](http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1220015110/-/DCSupplemental/sfig01.tif)

Fig. S2. Alignments of SOBIR1 sequences from tomato, Arabidopsis, N. benthamiana, and tobacco. (A) Amino acid sequence alignment of S/SOBIR1 (Solyc06g071810.1.1), SlSOBIR1-like (SlSOBIR1-l; Solyc03g111800.2.1), AtSOBIR1, and SlSERK3a/BAK1 (SlSERK3a/B). Amino acid residues highlighted in black and dark gray represent identical residues in all four or three of the aligned protein sequences, respectively. Residues in light gray or white represent residues present in two sequences or are unique residues, respectively. The conserved RD motif, as well as the conserved residues K377 and E407 of AtSOBIR1, present in the kinase domain of all four proteins, are underlined. (B) Nucleotide sequence alignment of tomato SISOBIR1, SISOBIR1-like (SISOBIR1-li), and Arabidopsis AtSOBIR1 (AT2G31880.1) coding regions. Residues highlighted in black and gray represent identical nucleotides in all three or two of the aligned coding regions, respectively. Nucleotide sequences used for the TRV-based VIGS constructs are indicated by different colors as follows: TRV:S/SOBIR1, green; TRV:SlSOBIR1-like, blue; and TRV:SlSOBIR1/SlSOBIR1-like, red. (C) Nucleotide sequence alignment of N. benthamiana NbSOBIR1, tobacco NtSOBIR1 (SGN-U441568), and NbSOBIR1-like (NbSOBIR1-l) coding regions. The available genomic sequence was used to obtain NbSOBIR1 and NbSOBIR1-like sequences, and EST data provided the NtSOBIR1 coding sequence. Intron sequences were manually removed from the NbSOBIR1-like sequence. Residues highlighted in black and gray represent identical nucleotides in all three or two of the aligned coding regions, respectively. Nucleotide sequences used for the TRV-based VIGS constructs are indicated by different colors as follows: TRV:NbSOBIR1, green; and TRV:NbSOBIR1-like, blue. TRV:NbSOBIR1/NbSOBIR1-like contains both of these fragments (NbSOBIR1 and NbSOBIR1-like).

[Fig. S2](http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1220015110/-/DCSupplemental/sfig02.pdf)

Fig. S3. Cf-4 interacts with S/SOBIR1 in a reverse immunoprecipitation assay, with SOBIR1 mutants in the RD motif of the kinase domain, and with S/SOBIR1 in the presence of Avr4, and SOBIR1 does not form homo- or heterodimers. (A) S/SOBIR1-eGFP was coexpressed with Cf-4-Myc in N. benthamiana, and total protein extract was subjected to immunopurification by using GFP-affinity beads. The total protein extract (Input) and immunopurified proteins (IP) were subjected to SDS/PAGE and blotted. Blots were incubated with αGFP antibody to detect immunopurified SlSOBIR1–eGFP, whereas coimmunopurified Cf-4–Myc was detected by using αMyc. (*B*) Cf-4–eGFP was coexpressed with S/SOBIR1–Myc, S/SOBIR1^{D473N}–Myc, S/SOBIR1-like^{D486N}–Myc, and *At*SOBIR1^{D489N}–Myc in N. benthamiana. Immunopurifications and detection of proteins were performed as described in A. (C) Cf-4–eGFP was coexpressed with SlSOBIR1–Myc in the presence of Avr4 or Avr9 (the OD₆₀₀ of the A. tumefaciens cultures was either 0.2 or 0.4) in N. benthamiana. Leaves were harvested 1 d after agroinfiltration, which was just before the onset of an HR in the Avr4 agroinfiltrated leaves. Immunopurifications and detection of proteins were performed as described in A. (D) SlSOBIR1–eGFP was coexpressed with Cf-4–Myc, SlSOBIR1–Myc, SlSOBIR1-like–Myc, and AtSOBIR1–Myc. After 2 d, SlSOBIR1–eGFP was immunopurified, and the samples were analyzed for copurification of the Myc-tagged versions. Immunopurifications and detection of proteins were performed as described in A. All assays were performed twice, and a representative picture for each experiment is shown.

[Fig. S3](http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1220015110/-/DCSupplemental/sfig03.tif)

Fig. S4. S/SOBIR1-eGFP localizes to the plasma membrane and cytoplasmic vesicles. Proteins were transiently expressed in N. benthamiana epidermal leaf cells, and their subcellular localization is shown. Each image shows a combination of the eGFP signal (green) and the chloroplast signal (red). (A) S/SOBIR1-eGFP localizes to the plasma membrane. When focusing on top of the plasma membrane, S/SOBIR1-eGFP is also detected in distinct spots that resemble cytoplasmic vesicles. (B) SlFLS2–GFP typically localizes to the plasma membrane. (C) GFP–HA localizes to the cytosol and the nucleus. (D) An untransformed plant was used as a negative control. Representative pictures for three independent experiments are shown.

[Fig. S4](http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1220015110/-/DCSupplemental/sfig04.tif)

Fig. S5. SOBIR1 kinase activity is essential for its role in Cf-4-mediated HR. (A) Expression of NbSOBIR1 is efficiently knocked down by inoculation of N. benthamiana with TRV:NbSOBIR1/NbSOBIR1-like. (B) Expression of NbSOBIR1 is efficiently knocked down by inoculation of N. benthamiana with TRV: NbSOBIR1. Inoculation with TRV:NbSOBIR1-like results in slight cross-silencing of NbSOBIR1 expression. For A and B, plants were inoculated with TRV:GUS or the indicated constructs targeting NbSOBIR1s, and relative expression of NbSOBIR1 was determined by qRT-PCR for each sample. Samples were normalized to endogenous NbActin. SDs show the variation between three technical repeats. In total, two biological experiments were performed with similar results, and a representative result is shown. (C) Kinase activity of SOBIR1 is required for Cf-4-mediated HR. Transgenic N. benthamiana:Cf-4 plants were subjected to VIGS by inoculation with TRV:NbSOBIR1/NbSOBIR1-like. Three weeks later, mature leaves were agroinfiltrated to transiently express the combinations GUS + Avr4, AtSOBIR1-Myc + Avr4, and AtSOBIR1^{D489N}-Myc + Avr4, as indicated. GUS, AtSOBIR1-Myc, and AtSOBIR1^{D489N}-Myc were infiltrated at final OD₆₀₀ = 0.7 and Avr4 at OD₆₀₀ = 0.03. (D) RT-PCR analysis confirms that AtSOBIR1–Myc and AtSOBIR1^{D489N}–Myc are not targeted by TRV:NbSOBIR1/NbSOBIR1-like–inoculation of N. benthamiana. Three weeks after inoculation with the indicated TRV constructs, leaves were agroinfiltrated with AtSOBIR1-Myc or AtSOBIR1^{D489N}-Myc. RNA was isolated, transcribed into cDNA, and used as a template for RT-PCRs using primers amplifying AtSOBIR1 or endogenous NbActin. The amount of PCR cycles is indicated.

[Fig. S5](http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1220015110/-/DCSupplemental/sfig05.tif)

Fig. S6. SOBIR1 is required for autoactivity of the Cf homolog Peru2, Ve1-mediated HR in tobacco, and Cf-2.2– and Ve1-mediated resistance in tomato. (A) Peru2 autoactivity is compromised upon silencing of NbSOBIR1. N. benthamiana plants were subjected to VIGS by inoculation with TRV:NbSOBIR1/ NbSOBIR1-like. Three weeks after TRV inoculation, Peru2–eGFP was transiently expressed by agroinfiltration at four sites in the leaves, and leaves were photographed 3 d later. (B) The Ve1-mediated HR is compromised upon targeting NtSOBIR1 homologs in tobacco. N. tabacum cultivar Samsun was subjected to VIGS by inoculation with the TRV constructs indicated above each image. TRV:EDS1 and TRV:GFP served as controls. Three weeks after TRV inoculation, Ve1 and Ave1 were coexpressed, and leaves were photographed 5 d later. The experiments were performed three times with three plants for each TRV construct, and representative pictures for the experiments are shown. (C) Targeting SISOBIR1 and SISOBIR1-like suppresses Cf-2.2-mediated resistance to C. fulvum expressing Avr2. Cf-2.2-expressing tomato was inoculated with TRV:SISOBIR1/SISOBIR1-like or TRV:GUS, and 3 wk later plants were inoculated with an Avr2secreting, GUS-transgenic strain of C. fulvum. Two weeks later, leaflets were stained for GUS activity to detect C. fulvum colonization. The amount of successful colonization attempts (blue spots) vs. the total amount of leaflets analyzed for that particular treatment is indicated between parentheses. (D) Tomato cultivar Motelle (carrying Ve1) was subjected to VIGS by inoculation with the constructs indicated above each image. TRV:GFP, TRV:Ve1, and non-TRV-inoculated Motelle plants were included as controls. Each image shows a mock (M)-treated plant on the left and a V. dahliae (Vd)-inoculated plant on the right. Stunting of the V. dahliae-inoculated plants, compared with the mock-treated plants indicates compromised resistance. Percentages between parentheses indicate the average canopy area (and SDs) of V. dahliae-inoculated plants in three independent experiments compared with the control mock treatment, for which the canopy area was set to 100%. Representative photographs for three independent experiments are shown.

[Fig. S6](http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1220015110/-/DCSupplemental/sfig06.tif)

Fig. S7. Quantification of V. dahliae biomass in Arabidopsis sobir1-1 and sobir1-1 Ve1-complemented lines and expression of Cf-4 and Ve1 in N. benthamiana silenced for the NbSOBIR1 homologs. (A) Relative quantity (R.Q.) of fungal biomass present in the plants shown in Fig. 4, as determined by qRT-PCR. SDs show the difference between technical repeats. The inoculation experiments and qRT-PCR quantifications were performed three times, with similar results. (B) Cf-4-eGFP and Ve1-eGFP are expressed in N. benthamiana silenced for the NbSOBIR1 homologs. N. benthamiana was subjected to VIGS by inoculation with the indicated TRV constructs and subsequently transiently transformed to express Cf-4-eGFP or Ve1-eGFP. RNA was isolated, transcribed into cDNA, and used as a template for RT-PCRs using primers amplifying Cf-4, Ve1, and endogenous NbActin, respectively. The amount of PCR cycles is indicated.

[Fig. S7](http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1220015110/-/DCSupplemental/sfig07.tif)

Fig. S8. S/SOBIR1 and S/SOBIR1-like interact with all Cf proteins tested and with the receptor-like proteins (RLPs) S/EIX2, S/CLV2, and S/TMM, but not with SlSNC2. (A) Cf-2.2, -4E, -9, and the autoactive Cf homolog Peru2, all C-terminally fused to eGFP, were coexpressed with SlSOBIR1–Myc and SlSOBIR1-like–Myc in N. benthamiana, and the proteins fused to eGFP were immunopurified by using GFP-affinity beads. Total proteins (Input) and immunopurified proteins (IP) were subjected to SDS/PAGE and blotted. Blots were incubated with αGFP antibody to detect the immunopurified proteins fused to eGFP, and αMyc antibody was used for detection of coimmunopurified SlSOBIR1–Myc and SlSOBIR1-like–Myc. Coomassie-stained blots showing the 50-kDa Rubisco band present in the input confirm equal loading. The assay was performed twice, and a representative picture is shown. (B) The indicated RLPs, fused to eGFP, were coexpressed with S/SOBIR1-Myc or S/SOBIR1-like-Myc in N. benthamiana and immunopurified by using GFP-affinity beads. Total proteins (Input) and immunopurified proteins (IP) were subjected to SDS/PAGE and blotted. Blots were incubated with α-GFP antibody to detect the immunopurified RLP–eGFP fusion proteins, and coimmunopurified SlSOBIR1–Myc and SlSOBIR1-like–Myc were detected by using α-Myc antibody. Coomassie-stained blots showing the 50-kDa Rubisco band present in the input confirm equal loading. The assay was performed three times, and a representative picture is shown.

[Fig. S8](http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1220015110/-/DCSupplemental/sfig08.tif)