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1.1. Mixed Layer Depth. For reasons of parsimony and based on
numerical analyses, we used the absolute photosynthetic active
radiation (PAR) rather than the average light intensity throughout
the mixed layer. The average light intensity throughout the mixed
layer has earlier been suggested as the more appropriate repre-
sentation of the light perceived by surface ocean cells (1). De-
termining the mixed layer depth (MLD) included five decision
levels, which increased the uncertainty of PAR estimation and
compressed the absolute PAR range (Fig. S3D). The top layer of
the ocean is subject to turbulent mixing, and the MLD can be used
to average PAR for cells within this layer. Cells within deep tur-
bulent layers compared with cells within shallow layers are ex-
posed on average to less light, which affects the intracellular
chlorophyll concentration (1). Thus, we evaluated the use of the
MLD to estimate PAR for samples within the first layer but found
no improvement in the predictions. A more detailed account is
given below.
We estimated the MLD for 39,378 samples based on field re-

cords of conductivity, temperature, and depth (CTD). We defined
the MLD as the change in temperature or density larger than Δ
compared with a reference value. We used two alternative refer-
ence values, the average between 0 and 10 m, and the average of
10 m above a given depth in the CTD profile. We used five values
for Δ (0.005, 0.01, 0.05, 0.1, and 0.5 °C or kg m−3). After an MLD
was detected, we tested temperature or density for 5 m below it.
This neighboring test avoided the small drops in the temperature
or density profile that would be confused with the MLD; if values
below the MLD did not drop consistently, we continued to scan
the CTD profile. Then, we looked for the closest CTD field to
a Cyanobacteria sample based on date, latitude, and longitude.
We set one-half of 1° as a maximal distance to associate a CTD
with a field sample. For field samples with no CTD, we used
a global dataset with monthly averages (www.ifremer.fr/cerweb/
deboyer/mld/home.php) (2). For samples above the MLD, we
estimated the mean PAR as the integral of PAR between the
surface PAR and theMLDdivided by theMLD. PAR at theMLD
was estimated with the downward attenuation equation (3). For
field samples below the MLD, we used the downward attenuation
equation byMorel et al. (3) at the depth of the sample. As a whole,
to use the average of PAR within the mixed layer, we introduced
five decision levels (variable, reference value, Δ, neighboring test,
and distance to the sample) all subject to errors. In addition, the
correlation between our in situMLD and climatological MLDwas
poor (2). By contrast, PAR estimated as a function of depth with
the downward attenuation equation only involved using PAR,
K490, and the depth of the field sample in the water column (3).
Because of the number of decisions involved to estimate average
PAR within the mixing layer and the lack of reference with which
to compare, we decided to estimate PAR solely as a function of
depth (3).

1.2. Neural Network Analyses and Local Regression Model. We used
back-propagation artificial neural networks (ANN) to evaluate
possible predictors of Prochlorococcus and Synechococcus cell
abundances. Temperature, PAR, nitrate, and phosphate concen-
tration and their combination were analyzed (Table S2). Two
hidden layers were deemed sufficient to predict the observed
Prochlorococcus and Synechococcus concentrations, because ad-
ditional layers did not improve the overall network performance.
Before training of each ANN model, the data were randomly di-
vided into calibration (20%) and evaluation (80%) datasets. The

weights and biases of both hidden layers of each ANNmodel were
derived by training against the calibration dataset using a total of
500 epochs. The predictive abilities of each trained ANN model
were subsequently evaluated against the validation dataset. The
goodness of fit was quantified using the root mean square error
(RMSE) and coefficient of determination (R2) (Table S2). Both
summary statistics were computed as averages of 25 ANN cali-
bration trials.
Preliminary runs showed a difference in the outcome of the

ANN analysis when including or excluding observations with no
Prochlorococcus. We, therefore, reported the results of both
calibration strategies. For Synechococcus, we did not make this
distinction. The predictive ability of the ANN Prochlorococcus
models significantly increased with the zero cell abundances ob-
servations included (Table S2). This increase in R2 was not sur-
prising, because the frequent presence of zero abundance
reduced the variance of the overall Prochlorococcus dataset.
When observations with zero Prochlorococcus were included,
temperature was the variable that explained the largest fraction
of the observed variation. When the zero cell abundance obser-
vations were removed, the predictive abilities of temperature
became similar to the predictive abilities of PAR (Table S2). This
change in R2 indicated the presence of a critical temperature
threshold for the presence of Prochlorococcus. The RMSE and R2

summary statistics suggested that PAR was a poor predictor for
Prochlorococcus if samples with zero abundance were included,
whereas the performance of PAR improved if these samples were
excluded (Table S2). Nitrate and phosphate were weak predictors
of cell abundance, irrespective of whether zero cell abundance
observations were included. Joint use of two environmental var-
iables resulted in a significant increase in the ANN goodness of fit,
whereas the additional benefit of third and fourth predictors was
negligible (Table S2). With zero cell abundance data excluded,
temperature and PAR exhibited the highestR2 (0.413). This value
was significantly higher than the individual predictors. When
phosphate was added as a third explanatory variable, the network
performance only improved by 7% (Table S2). The same was true
for nitrate. The ANN results for Synechococcus were very similar
(Table S2). Temperature and PAR were the strongest predictors.
The predictions improved marginally in 2% if both nutrients were
included (Table S2). Therefore, we retained temperature and
PAR as the main explanatory variables for predicting both Pro-
chlorococcus and Synechococcus.
ANN is a powerful method to select the most informative var-

iables in nonlinear regression. However, ANNs are black box
models and less suitable for identifying analytical relationships
between input and output variables. To develop such analytical
relationships, we introduced a local nonparametric regression
model to find the shape and thresholds of cell abundance as a
function of temperature and PAR. To find the shapes and
thresholds, we defined a computational grid in temperature and
PAR space, and for each grid point, we searched for the closest 200
cell abundance values and estimated the local expected mean.
Because the local regression model was sensitive to data coverage,
we then formulated a parametric regression model to smooth out
any local irregularities with little biological support (Fig. S3A). The
performances of the local and parametric regression models were
similar, indicating that the parametric models could be used to
describe the abundance of both lineages. For Prochlorococcus, the
parametric model accounted for 98.12% of the variability ex-
plained by the local regression model and 96.20% of the residual
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sum of squares (Table S3). For Synechococcus, the corresponding
percentages were 83.19% and 89.52% (Table S3).

1.3. Parametric Regression Model. The parametric regression model
included the probability P of nonzero abundance and the con-
centrationC+ for the case of positive cell abundance (Eq. 1). Zero
Prochlorococcus abundances were recorded mostly below 13 °C
(Fig. 1B and Fig. S3B). To estimate P and C+, we used logarith-
mically transformed observations of PAR and untransformed
measurements of temperature. For P, we used presence and ab-
sence data (Fig. S6 A and B) to fit a logistic equation with two
thresholds for temperature (8 °C and 13 °C) (Eq. 2 and Fig. S6 A
and B). For C+, we included linear combinations of PAR and
temperature with thresholds at 0.1 Em−2 d−1 to produce a concave
curve at high PAR and at 20 °C, produce a change in the slope of
the function at higher temperatures (Fig. S6B). The regression
model proposed for Synechococcus included a region between 0.01
and 1 E m−2 d−1 with a log-linear dependence between cell con-
centrations. Outside this region, no apparent influence of PAR
was found (Fig. S6B). We also identified a region of log-linear
increase in cell concentration with temperature up to 10 °C and
saturation thereafter (Fig. S6B). Finally, the model included a
nonlinear interaction between PAR and temperature (Eq. 4).

1.4. Prediction of Global Abundance and Distribution. To predict the
global abundance of Prochlorococcus and Synechococcus with our

parametric regression models, we used as input monthly average
temperatures from the World Ocean Atlas 2005 (1° × 1° resolu-
tion) (4) and 8-d average PAR and KD490 values derived from
satellite data (SeaWiFS 0.083° × 0.083°) (5). The environmental
data were structured in a 3D matrix with layers from 0 to 200 m
depth. The layers have the same depth intervals in the water col-
umn used by the World Ocean Atlas (0–10, 10–20, 20–30, 30–50,
50–75, 75–100, 100–125, 125–150, and 150–200m). The downward
light attenuation (KPAR) used to estimate PAR at depth was based
on the light attenuation coefficient (K490) and chlorophyll a con-
centration (3). For each depth layer, the value of PARwas derived
by averaging values from the top and the bottom of the layer at
each geographical grid point. The output of the regression models
was the mean cell abundance per milliliter in logarithm scale. We
converted logarithm to linear scale using the bias correction factor
(γPRO= 1.8095, γSYN= 3.6415).Wemultiplied the volume of each
layer by its predicted cell abundance and summed over all layers to
obtain total estimates at each grid point.
To estimate the surface distribution, we used sea surface

temperatures and PAR satellite data (SeaWiFS 0.083° × 0.083°)
(5) as input variables in our regression model. We obtained
monthly maps of cell abundance on a 0.083° × 0.083° grid that
were subsequently averaged to a 1° × 1° resolution. These
monthly assessments (Fig. S5) were averaged to obtain an annual
distribution map of Prochlorococcus and Synechococcus (Fig. 2).
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Fig. S1. Environmental variables and boundaries ordered by pairs. Minimum and maximum values were PAR = 10−4 and 101.8 E m−2 d−1, temperature = −2 °C
and 30 °C, and nitrate and phosphate = 10−2 μmol L−1and no upper limit. The numbers of discarded observations were 4,296 for values with PAR < PARmin,
28 for values with PAR > PARmax, and 305 for values with temperature > 30 °C. Symbol color represents the number of overlapping observations.

Flombaum et al. www.pnas.org/cgi/content/short/1307701110 3 of 12

www.pnas.org/cgi/content/short/1307701110


Fig. S2. Overview of data analysis. First, we identified the most informative explanatory variables using the ANN analysis. Second, we identified the shape and
thresholds of the observed cell abundances as a function of environmental variables using a local regression analysis. Third, we proposed a parametric re-
gression model similar in shape to the local regression analysis. The relatively simple regression model accurately predicts the major trends of the observed
Prochlorococcus and Synechococcus data with a single closed-form equation.
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Fig. S3. Analyses of Prochlorococcus and Synechococcus abundance as a function of temperature, PAR, and depth. (A) Abundance as a function of tem-
perature and PAR for local regression and parametric models. The local regression model used the input of the 200 nearest observations in a temperature and
PAR computational grid. The parametric regression used the whole dataset. (B) Number of observations of Prochlorococcus zero and larger than zero cell
abundance as a function of temperature and PAR. (C) Number of observations as a function of the cell abundance and water column depth. Samples were
constrained to the latitudinal band between 30°N and 30°S. (D) Abundance as a function of corrected and uncorrected PAR. The corrected PAR is the average
of PAR intensity throughout the MLD. The uncorrected PAR estimated PAR intensity using a downward attenuation model (1).
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Fig. S4. Sensitivity analysis of the parametric model. We evaluated the effects of single cruises and time series on the model parameters by removing one
cruise at a time (labeled cruise; split sampling). The model parameter values were not affected by removing different cruises, showing that the parametric
model was well-defined. We evaluated the effects of sample size on the final optimized parameter estimates using an iterative jackknife procedure with
20,000, 15,000, 10,000, and 5,000 observations. Box plot for (A) the parameters (Eqs. 2–4), (B) R2, and (C) mean annual global cell abundance of the parametric
model. The optimized model parameters seemed insensitive to down sampling of the original global dataset, but their posterior uncertainty increased with
decreasing sample size. (D) Observed vs. estimated cell abundance for major oceans. We estimated cell abundance using temperature and PAR records as-
sociated with each Prochlorococcus and Synechococcus field sample. Solid black line is the 1:1 relationship.
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Fig. S5. Monthly sea surface distribution of Prochlorococcus and Synechococcus. Mean monthly abundances were estimated using SeaWiFS PAR and sea
surface temperature as inputs to the niche models.

Flombaum et al. www.pnas.org/cgi/content/short/1307701110 7 of 12

www.pnas.org/cgi/content/short/1307701110


Fig. S6. Observed and estimated Prochlorococcus and Synechococcus abundances and probability of presence as a function of temperature, PAR, and nitrate
concentration. (A) Temperature gradients at constant PAR intervals (10x ± 0.05 E m−2 d−1). (B) PAR gradients at constant temperature intervals (x ± 0.05 °C). (C)
Nitrate gradients at constant temperature and PAR intervals (x ± 0.25 °C and 10x ± 0.05 E m−2 d−1, respectively). Symbols represent observed abundance or
probability, and symbol color the number of overlapped observations. Lines represent expected abundance or probability. In A and B, the observed probability
to find Prochlorococcus equals one for samples with cells abundance mL−1 > 0 and zero for cells abundance mL−1 = 0.
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Table S1. List of cruises and time series used in this study

ID

Year range Latitudinal range (°) Longitudinal range (°)
Number of
observations

Ref.First Last Low High Low High PRO SYN

1 1996 1999 16.1 16.5 119.9 120.4 0 139 1
2; 5 1998 2003 −33.6 49.8 0.6 357.4 518 575 2
3 2003 2003 −47.8 48.0 308.6 348.5 283 283 3
4 2004 2004 −47.0 49.3 309.7 353.4 945 932 4
6 1999 1999 −46.1 −42.5 61.9 64.8 1,035 1,035 5
7 1994 1994 7.9 26.0 56.6 67.1 311 298 6
8 2002 2002 70.5 79.5 4.0 20.0 0 41 7
9 1990 1993 46.1 81.2 144.9 353.3 0 233 8
11 2005 2005 −12.7 17.5 189.6 200.3 119 119 9
12 1989 2006 23.9 61.0 292.6 349.9 13,179 12,791 10
13 2002 2003 43.6 43.8 354.4 354.4 252 252 11
14 2007 2007 −16.0 16.9 190.0 201.0 46 46 12
15 2003 2003 23.6 54.4 202.7 208.0 221 221 13
17–25 2000 2003 −23.1 −20.0 166.1 167.6 443 443 14
26 1990 2005 43.3 43.4 7.5 7.9 407 494 15
27 1995 1995 43.3 43.3 7.5 7.5 286 286 16
28–30 1991 2003 −23.1 21.5 166.1 341.7 1,015 1,033 17
31 1996 1996 −7.6 8.0 179.5 180.5 1,537 1,538 18
32; 43 1992 2003 −23.1 21.5 164.6 341.4 1,970 1,889 19
33 1997 1998 35.2 36.5 358.0 359.9 732 677 20
34 1999 1999 42.1 42.2 293.4 293.4 0 137 21
35 1996 1997 40.6 40.6 22.9 22.9 0 24 22
37 1988 2006 22.8 22.8 202.0 202.0 1,338 1,347 23
38 2001 2004 33.0 33.0 132.5 132.5 422 422 24
39 1995 1995 10.0 24.3 56.5 68.8 2,001 1,443 25
40 1999 2001 29.6 30.6 272.2 275.1 171 162 26
42 2000 2000 5.2 5.2 60.3 60.3 0 30 27
44 2001 2001 39.0 44.5 339.3 343.3 102 102 28
45 1996 1996 36.0 59.3 338.8 341.0 374 374 29
46 1999 1999 31.0 43.4 3.8 359.1 563 610 30
47 1992 1992 −19.6 8.0 164.2 166.2 357 322 31
48 2000 2002 32.9 32.9 242.8 242.8 67 67 32
49 1994 1996 29.8 35.1 235.7 242.7 0 491 33
50 1999 2002 0.0 0.1 145.0 200.0 592 592 34
51 1999 2002 −39.0 50.1 40.9 359.5 1,411 1,578 35
52 1992 1992 −12.2 12.0 219.5 225.5 144 100 36
53 1997 1998 −71.3 −53.0 185.3 194.1 0 259 37
54 1989 2007 20.7 36.9 294.0 303.8 1,384 1,383 38
55 2001 2001 −2.4 26.0 56.6 67.0 375 375 39
56 2004 2004 −34.6 −8.3 218.7 287.6 1,436 1,582 40
57 2001 2002 32.4 33.6 32.3 34.0 112 69 41
58 2005 2005 27.8 66.6 280.5 344.5 183 183 42
59 2000 2003 33.5 33.5 241.6 241.6 132 128 43
60 2002 2004 68.5 73.7 192.6 208.2 0 113 44
61 1999 1999 −64.9 70.4 173.7 200.1 34 34 45
62 1987 1996 −30.0 43.4 2.0 355.9 1,262 1,270 46
63 1989 1995 −43.0 62.8 8.3 340.4 442 521 47
64 2000 2000 −24.0 14.2 0.9 358.4 184 184 48
65 2005 2005 71.3 71.8 202.7 206.4 0 69 49
66; 74; 100 2000 2004 −23.1 44.7 166.1 235.8 729 789 50
68 2000 2000 7.4 8.7 269.2 269.5 10 10 51
69 1999 1999 27.2 29.5 34.1 35.0 63 63 52
70 1999 2000 34.9 34.9 29.5 29.5 90 90 53
71 2005 2005 −7.4 15.1 260.7 279.0 20 20 54
72 1998 1998 22.8 50.0 147.1 202.0 89 89 55
73 2001 2001 24.9 31.1 241.2 247.2 62 62 56
75 1998 2000 44.0 44.0 155.0 155.0 104 104 57
78 1991 1991 −0.0 0.2 165.0 264.6 0 45 58
79 1992 1994 47.1 49.7 294.0 298.0 0 0 59
80; 96 2000 2003 −23.1 44.7 166.1 235.8 1,013 2,148 60
81 2001 2002 10.0 40.3 289.6 314.7 157 145 61
82 2001 2001 34.4 40.0 286.8 288.2 49 41 62
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Table S1. Cont.

ID

Year range Latitudinal range (°) Longitudinal range (°)
Number of
observations

Ref.First Last Low High Low High PRO SYN

83; 87 2000 2008 −23.1 71.4 166.1 288.6 725 434 63
84 2007 2007 23.2 24.5 200.8 204.0 184 152 64
85 2004 2007 29.8 35.1 235.7 242.7 1,728 1,955 65
86 2003 2004 −34.6 −20.0 1.7 359.3 198 198 66
88 2003 2003 −35.8 −12.2 23.7 113.5 65 57 67
89 1998 1998 26.0 40.2 289.2 295.9 42 51 68
90 2005 2005 46.0 51.0 160.0 215.0 0 48 69
91 1996 1998 −78.0 −52.9 168.9 194.1 0 155 70
92 2001 2001 31.8 33.2 295.1 295.8 11 12 71
93 1999 2000 −32.2 29.9 309.7 342.7 312 312 72
94 1995 1995 36.0 37.1 352.7 355.9 196 197 73
95 2007 2008 31.7 31.7 243.3 243.3 16 19 74
97 2003 2003 −26.0 48.5 140.7 274.2 77 222 75
98 2005 2005 −33.7 −11.0 168.9 179.4 65 65 76
99 2007 2007 42.0 42.0 145.2 145.3 204 204 77
101 1997 1997 6.0 32.0 108.8 129.0 352 345 78
102 1998 1998 24.5 32.0 121.0 129.0 222 222 79
103 2003 2005 −37.7 47.1 2.6 359.7 457 454 80
104 2001 2002 20.1 22.3 113.2 116.2 159 161 81
105 2002 2002 28.6 35.0 121.0 126.8 117 117 82
106 2003 2003 28.4 31.9 122.6 128.9 42 42 83
107 2002 2003 29.0 32.0 122.0 123.5 196 196 84
108 1998 1998 6.3 23.9 110.0 120.0 121 126 85
109 2005 2005 21.7 23.2 116.8 118.9 46 46 86
110 2002 2005 18.5 60.9 111.0 182.3 313 313 80

Longitude and latitude are expressed in decimal scale. ID refers to the identification label in our dataset. PRO and SYN refer to the number of observations
with Prochlorococcus and Synechococcus reported in each dataset.
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Table S2. Selection of environmental factors

Predictors

Prochlorococcus
Synechococcus cells
per milliliter ≥ 0Cells per milliliter ≥ 0 Cells per milliliter > 0

RMSE R2 RMSE R2 RMSE R2

T 1.298 0.662 0.821 0.261 1.072 0.146
N 2.040 0.141 0.888 0.130 1.129 0.055
P 1.943 0.231 0.935 0.030 1.153 0.010
PAR 2.102 0.091 0.804 0.282 1.071 0.145
T N 1.267 0.668 0.796 0.328 1.103 0.085
T P 1.294 0.655 0.805 0.306 1.053 0.164
T PAR 1.269 0.662 0.723 0.413 0.937 0.349
T N P 1.276 0.659 0.806 0.287 1.069 0.147
T N PAR 1.273 0.668 0.729 0.414 0.959 0.319
T P PAR 1.257 0.679 0.732 0.442 0.950 0.335
T N P PAR 1.262 0.674 0.743 0.392 0.938 0.355

ANN analysis for Prochlorococcus and Synechococcus as a function of environmental variables and all pos-
sible combinations (the selected option is in bold). N, nitrate; P, phosphate; R2, coefficient of determination; T,
temperature.

Table S3. Comparison between parametric and local regression models

Prochlorococcus cells per
milliliter ≥ 0

Synechococcus cells
per milliliter ≥ 0

Models RSS R2 RSS R2

Parametric model 59,630 0.665 32,881 0.341
Local regression model 54,766 0.678 29,436 0.415
Total 169,955 49,920
Ratio 0.962 0.981 0.895 0.832

Explained variance (R2) and residual sum of squares (RSS) for the global abundance model. The parametric
regression models explained a significant fraction of total variance with two environmental variables and 5 or 10
parameters (Eqs. 1–4) compared with the local regression model with the same environmental variables but an
unconstrained number of parameters. A ratio of R2 and RSS values close to one indicated a similar performance of
the regression and the local regression model. Ratio R2: parametric divided by local; ratio RSS: local divided by
parametric.

Table S4. Fitted parameters for the parametric regression model

Parameter Value

Prochlorococcus a −4.9348
b −0.3224
c 0.1956
c1 0.6243
c2 −0.6127
d 3.2867
e 0.4893
e1 −0.1629
f 0.0690
f1 −8.11 × 10-4

Synechococcus m 1.749
n 0.309
n1 0.145
n2 −0.234
o −0.177

We assumed that CPRO, C+, and CSYN are on log10 scale (Eqs. 1–4). The correction factor gamma (γ) was applied
to avoid bias from the logarithm to the decimal scale (γPRO = 1.8095 and γSYN = 3.6415). Parameter letters
correspond to the parametric regression model (Eqs. 1–4).
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