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Preparation of Apigenin-Immobilized Polyethyleneglycol-Polyacrylamide
Beads.Apigenin was immobilized to amino polyethyleneglycol-
polyacrylamide copolymer beads (PEGA beads; EMD Bio-
sciences). Briefly, 0.40 mmol/mg PEGA beads were washed
three times with pyridine and subsequently mixed with 3.3 mol
equivalents (to the amino group loaded on the beads) of
4-nitrophenyl bromoacetate. Beads were stirred at room temper-
ature for 3 h, filtered, washed three times with ∼10 mL each di-
chloromethane (CH2Cl2), MeOH, and N,N′-dimethylformamide,
and subsequently mixed with 2.2 mol equivalents apigenin and
1.8 mol equivalents K2CO3 to the bromoacetyl group loaded on
the beads. The resulting suspension was stirred at room tem-
perature for 3 d, filtered, and washed three times with ∼10 mL
each CH2Cl2, MeOH, and H2O. The apigenin-immobilized PEGA
beads were vacuum-dried. Filtrates were neutralized by the ad-
dition of 1 M aqueous HCl. After layer separation, the aqueous
layer was extracted seven times with 50 mL EtOAc. The com-
bined organic layer was washed with brine, dried over anhydrous
sodium sulfate (Na2SO4), and concentrated in vacuo. The un-
loaded apigenin was recovered from the supernatant by silica
gel chromatography (chloroform/MeOH = 20:1). The amount
of apigenin immobilized on 1 mg dried PEGA beads was es-
timated to be ∼0.14 μmol as determined by subtracting the
amount of unloaded apigenin from the amount of apigenin used
in the reaction.

Plasmid Construction. pEGFP–heterogeneous nuclear ribonu-
cleoprotein A2 (hnRNPA2) and plasmid T7-driven expression 9c
(pET9c)-hnRNPA2 were provided by Lexie Friend (University
of Queensland, St. Lucia, Australia) (1) and Adrian R. Krainer
(Cold Spring Harbor Laboratory, Cold Spring Harbor, NY) (2),
respectively. pEGFP-BAG1 (B-cell lymphoma 2-associated
athanogene 1) L and pEGFP–Rho-guanine nucleotide ex-
change factor 1 were obtained from Ann C. Williams (Bristol
University, Bristol, United Kingdom) (3) and Philip B. Wede-
gaertner (Kimmel Cancer Institute, Philadelphia) (4), respectively.
The different hnRNPA2 cDNA fragments were amplified using
the pET9c-hnRNPA2 clone as a template and cloned into a plas-
mid entry-driven topoisomearse (pENTR-D-TOPO) vector (Life
Technologies). The following primers were used to generate the

PCR products comprising different fragments of hnRNPA2 (Ta-
ble S1): to generate hnRNPA2 full length, PrimersAndreaOhio
(PAO)-351 and PAO-338; for hnRNPA2ΔC-terminal region
(hnRNPA2δC, amino acids 1-263), PAO-351 and PAO-337; for
hnRNPA2δglycine-rich domain (hnRNPA2δGRD, amino acids 1–
189), PAO-351 and PAO-372; for hnRNPA2glycine-rich domain
(hnRNPA2GRD, amino acids 190–341), PAO-374 and PAO-338;
and for hnRNPA2C-terminal region (hnRNPA2C, amino acids
264–341), PAO-352 and PAO-338. To generate the GST-tagged
and 6xHis-tagged fragments, the pENTR-D-TOPO containing
hnRNPA2 fragments was cloned into pDEST15 and pDEST17
vectors, respectively, by recombination using the Gateway LR
Clonase Enzyme Mix and the conditions suggested by the manu-
facturer (Life Technologies). To generate the fluorescent in-
dicator protein (FLIP) constructs, hnRNP-A2C cDNA was
amplified by PCR from the pET9c-hnRNPA2 vector using the
PAO-379 and PAO-378 primers pair (Table S1). Fragments were
cloned into the pENTR-D-TOPO vector and transferred to the
6xHis-tagged pFLIP vectors by recombination using the Gateway
LR Clonase Enzyme Mix. pFLIP vectors, previously used to
generate biosensors, were generously provided by Wolf Frommer
(Carnegie Institution for Science, Stanford, CA) (5). The
hnRNPA2C fragment was cloned into pFLIP1 or pFLIP2 vectors
containing the N-terminal CFP and C-terminal YFP tags or
pFLIP4 vector containing the N-terminal GFP and C-terminal
monomeric Kusabira-Orange. pFLIP2 and pFLIP4 vectors hold
the Gateway recombination linkers flanked by the KpnI and SpeI
restriction sites (Fig. S5). Different versions of FLIP2-hnRNPA2C

(referred as pFLIP2-1, -2-2 and -2-3-hnRNPA2C) and FLIP4-
hnRNPA2C (referred as pFLIP4-1 and -4-2-hnRNPA2C) were
generated by digestion and self-ligation using KpnI and/or SpeI
sites to improve FRET emission (Fig. S5).

Cell Culture. MDA-MB-231 breast cancer cells were grown in
DMEM supplemented with 10% (vol/vol) FBS and 1% penicillin/
streptomycin. MCF-10A immortalized breast epithelial cells were
grown in DMEM/F12 medium supplemented with 10% (vol/vol)
FBS, 1% penicillin/streptomycin, 20 ng/mL EGF (Prepotech),
0.5 mg/mL hydrocortisone (Sigma), 100 ng/mL cholera toxin
(Sigma), and 10 μg/mL insulin (Sigma). All cells were obtained
from ATCC and cultured at 37 °C in 5% CO2 environment.
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Fig. S1. Chemical structure of flavonoids and analysis of identified sequences to determine putative apigenin target enrichment. (A) Schematic representation
of chemical structures of the flavone apigenin and the flavanone naringenin. (B) Calculation of normalized in frame-aligned counts per gene (nICPG) model.
Sequences were filtered and aligned to human coding sequences. The number of sequences aligned in frame to a single gene was considered as the in frame-
aligned count (blue bar), whereas alignment of a single sequence to multiple genes was considered as the weighted count (purple bar).

Arango et al. www.pnas.org/cgi/content/short/1303726110 2 of 9

www.pnas.org/cgi/content/short/1303726110


C
-E

2

A
-E

2

C
-E

1

A
-E

1

In
pu

t1

In
pu

t2

O
ri-

lib

4.0

1.0

2.0

3.0

0

lo
g1

0
(n

IC
P

G
)

4.0

1.0

2.0

3.0

0

C
-E

2

A
-E

2

C
-E

1

A
-E

1

In
pu

t1

In
pu

t2

O
ri-

lib

C
-E

2

A
-E

2

C
-E

1

A
-E

1

In
pu

t1

In
pu

t2

O
ri-

lib
4.0

1.0

2.0

3.0

0

C
-E

2
A

-E
2

C
-E

1
A

-E
1

In
pu

t2

log10(nICPG)

In
pu

t1
O

ri-
lib

15
,5

68
 g

en
es

IV

III

I
II

C
-E

2

A
-E

2

C
-E

1

A
-E

1

In
pu

t1

In
pu

t2

O
ri-

lib

4.0

1.0

2.0

3.0

0

Signal distribution

Cluster I

Cluster II

Cluster III

Cluster IV

GTPase activation
Membrane

Alternative splicing
Ion transport

Phosphoprotein
Thyroid hormones biosynthesis

Calcium transport
DNA damage

Transport
1 0.1 0.01 0.001

p-value

Host-virus interaction
Tandem repeat

Centromere
Cell cycle

Tumore suppressor
Blocked amino end

Intestine
Iron

Pyroglutamic acid
Transmembrane protein

Gonad
Heme

Vitamin B12 transport
Cobalt transport

Paired box
Signal-anchor

Enriched functional categories

Cluster II

Cluster III

Cluster IV

CBA

Cluster I

1 0.1 0.01 0.001
p-value

1 0.1 0.01 0.001
p-value

1 0.1 0.01 0.001
p-value

lo
g1

0
(n

IC
P

G
)

lo
g 1

0
(n

IC
P

G
)

lo
g1

0
(n

IC
P

G
)

Fig. S2. Hierarchical clustering analysis of the phage display coupled with second generation sequencing (PD-Seq) results. (A) Heat map representation of
log10(nICPG) for the minimal 15,568 genes present in the phage display library analyzed by hierarchical clustering using the average linkage method. The
columns in the heat map correspond to the columns described in Fig. 1C. An enlarged view of cluster I is shown in Fig. 1E. Selected clusters are indicated by
Roman numbers. (B) Line graph indicating distribution of log10(nICPG) within clusters. The red line indicates log10(nICPG) of hnRNPA2/B1. (C) The bar graph
displays functional categories enriched in each cluster, and the x axis (log scale) indicates the P value. Filled black bars correspond to functional categories
enriched significantly (P < 0.01).
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Fig. S3. Conventional phage display identifies clones that bind to the apigenin-loaded beads (A-beads) and are highly enriched in the PD-Seq. (A) Phage (ϕ)
enrichment was determined by counting pfu per milliliter in elutions from A- (white bars) and unloaded control beads (C-beads; black bars) after each round of
biopanning (first, second, and third). (B) Enrichment of selected clones was determined by PCR using T7 primers (Table S1) flanking the insert after every round
of biopanning. (C) Peptide sequences of apigenin binding peptides isolated by conventional phage display. Sequences in red correspond to the hnRNPA2/B1
peptide fragment, and sequences in black correspond to the MKET noncoding fragment. (D) Summary of sequence reads, total number of reads, multicloning
site (MCS) reads, and MKET reads for each of the libraries generated and sequenced by Illumina GAII. (E) Nucleotide sequence of the phage MCS without insert
or containing the MKET clone. (F) Alignment of the MKET DNA and peptide sequences indicating its probable origin.
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Fig. S4. Validation of apigenin targets. (A) A-beads were coincubated with selected phages in the presence of 20 μM apigenin, naringenin, or DMSO. Relative
binding percentage to A-beads was determined by counting pfu per milliliter ϕ-hnRNPA2C relative to DMSO control. Data represent the mean ± SEM (n = 3).
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Lysates from HeLa cell expressing full-length (D) Rho-guanine nucleotide exchange factor 1-GFP or (E) GFP-BCL2-associated athanogene 1 (GFP-BAG1) were
used in pull-down assays with A- or C-beads (indicated as A or C, respectively), resolved by SDS/PAGE, and analyzed by Western blot using anti-GFP antibodies.
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1. Patterson G, Day RN, Piston D (2001) Fluorescent protein spectra. J Cell Sci 114(Pt 5):837–838.
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with increasing concentrations of the indicated flavonoids (0, 1, 5, 10, 25, 50, and 100 μM) for 3 h at 37 °C. RFUs were determined by spectrofluorometry (λext =
405 nm; λemi = 460–600 nm) and represented as emission spectra. The calculated YFP/CFP fluorescent ratios (530/480 nm) are also represented over the 0- to
100-μM concentration range for each flavonoid. The chemical structures of the corresponding flavonoids are shown. Data represent the mean ± SEM (n = 3).
(A) Flavones: luteolin and chrysoeriol. (B) Apigenin glucosides: apigenin 7-O glucoside and apigenin 6-C glucoside. (C) Flavopiridol. (D) Flavanones: naringenin
and eriodictyol. (E) Flavonols: quercetin and kaempferol. (F) Genistein. Statistical significance of the variation of the observed YFP/CFP ratios over the tested
flavonoid concentration range was conducted by one-way ANOVA. Black curves represent P < 0.05, and broken gray curves represent P ≥ 0.05.
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Fig. S8. Expression of hnRNPA2 in breast epithelial cells. MDA-MB-231 breast cancer epithelial cells and MCF-10A noncarcinogenic epithelial breast cells were
treated with 50 μM apigenin or diluent DMSO control for 48 h. (A) hnRNPA2 expression was evaluated by quantitative RT-PCR. Data represents mean ± SEM
(n = 4). (B) hnRNPA2 expression level determined by Western blots. Data are representative of three independent blots.

Table S1. Primers used to generate Illumina libraries, hnRNPA2 clones, and analysis of splicing

Primer Sequence Forward/reverse

PAO-351 5′-AAGGAAAAAAGCGGCCGCCATGGAGAGAGAAAAG-3′ Forward
PAO-338 5′-TTATAGGCGCGCCCGTATCGGCTCCTCCCA-3′ Reverse
PAO-337 5′-AAGGCGCGCCCATATCCAGGTCCTCCACCA-3′ Reverse
PAO-372 5′-AAGGCGCGCCCAGAACTCTGAACTTCCTGC-3′ Reverse
PAO-374 5′-AAGGAAAAAAGCGGCCGCCGGAAGAGGAGGCAAC-3′ Forward
PAO-352 5′-AAGGAAAAAAGCGGCCGCCGGCAACCAGGGTG-3′ Forward
PAO-377 5′-AAGGAAAAAAGCGGCCGCCGGTACCATGGAGAGAGAAAA-3′ Forward
PAO-379 5′-TTATAGGCGCGCCCACTAGTGTATCGGCTCCTC-3′ Reverse
PAO-378 5′-AAGGAAAAAAGCGGCCGCCGGTACCGGCAACCAGGGTG-3′ Forward
PAO-462 5′-AGACCAGTGGACATTGGTTC-3′ Forward
PAO-463 5′-GGTCCCTCCAGGAAACAAA-3′ Reverse
PAO-545 5′-CTTGGCCAATTTGCCTGTAT-3′ Forward
PAO-546 5′-GGCAGAAACTCTGCTGTTCC-3′ Reverse
PAO-547 5′-CGAGGCAAGATAAGCAAGGA-3′ Forward
PAO-548 5′-CACATGGAACAATTTCCAAGAA-3′ Reverse
PAO-673 5′-GGACCACCGCATCTCTACAT-3′ Forward
PAO-674 5′-TCTCCGCAGTTTCCTCAAAT-3′ Reverse
PAO-230 5′-ACTTTGGTATCGTGGAAGGACT-3′ Forward
PAO-231 5′-GTAGAGGCAGGGATGATGTTCT-3′ Reverse
T7 insert up 5′-NNNATGCTCGGGGATCCGAATT-3′ Forward
T7 insert down 5′-NNNAACCCCTCAAGACCCGTTTAG-3′ Reverse

Table S2. Summary of reads obtained by PD-Seq

Library Total reads Filtered reads Aligned reads In-frame reads

Original library 4,859,548 873,845 661,351 545,038
Input1 7,817,706 1,738,992 1,332,165 1,102,007
C-E1 7,318,918 1,704,578 1,135,646 761,372
A-E1 5,755,257 1,721,367 1,149,144 751,676
Input2 3,863,523 277,984 208,054 172,963
C-E2 6,250,021 610,713 320,373 176,654
A-E2 10,694,740 1,401,628 508,012 313,289
Total 46,559,713 8,329,107 5,314,745 3,822,999

Filtered reads correspond to the number of reads minus the MKET clone
contaminant and reads with no insert (MCS reads) (Fig. S3).
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