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1. Nature of the Coupling to the Magnetic Field. In the main text, we
pointed out that the coupling of the applied magnetic field to the
system must necessarily involve spin–orbit interactions. In this
section, we expand more on the underlying reasoning.
In general, the coupling of the field could be due purely to spin,

purely to orbital, or to a spin–orbit coupled system. Pure spin
coupling can be ruled out immediately in our measurements
because it would be independent of the direction of the in-plane
field Hjj and so cannot cause anisotropic magnetoresistance
(AMR). Pure orbital coupling, on the other hand, seems to
nicely fit some of the observations: This coupling has a natural
critical field, the field at which the magnetic length is comparable
to the confinement width of the 2D electrons. Besides, the dXZ/
dYZ wavefunctions being less confined than the dXY wavefunction
(they are lighter in this direction) would explain why the coupling
to them is better. Furthermore, orbital coupling would differ-
entiate between the dXY/dYZ bands: Because orbital coupling is
inversely proportional to the band mass perpendicular to the
direction of Hjj, which for a general angle of the field in the plane
ϕH is not identical for the two bands, this coupling will lift their
degeneracy and will induce orbital polarization, making one
Fermi ellipse larger than the other. This orbital polarization
would lead to crystalline anisotropy, and if it also causes inter-
band scattering to be suppressed, this scenario may also explain
the drop in ρXX. However, despite this apparent agreement,
three pieces of data exclude orbital coupling as the relevant
mechanism. First, we observe that the ρXX fall occurs for all
angles ϕH at the same value of Hjj. If this drop was due to band
polarization, no drop should have been observed along, e.g.,
ϕH = 45°, where Hjj couples identically to both orbitals and does
not lift their degeneracy. Second, orbital coupling cannot explain
why the behavior is similar in parallel and perpendicular fields
(Fig. S2; see also ref 1). Third, the sign of orbital coupling is
wrong: Such coupling would increase the band mass perpendic-
ular to the field direction, and thus ρXX will increase when the
field is perpendicular to the current, whereas we measure a de-
crease of ρXX in this relative orientation (positive AMR). In fact,
negative AMR was observed at elevated temperatures (2), sug-
gesting that at high temperatures the width of the 2D is large
and orbital effects are important. We observe the opposite sign
at T = 2 K, clearly showing that this is not an orbital effect. Thus,
the only remaining coupling mechanism is that of a field to a
spin–orbit coupled system.

2. Mean-Field Theory of the t2g Itinerant Bands Coupled to Localized
Spins. Our starting point for the theoretical analysis is the
Hamiltonian of three itinerant bands coupled to a disordered
lattice of localized moments
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The three bands α = 1,2,3 represent the dXY, dXZ, and dYZ or-
bitals arranged in a square lattice slightly below the interface.
The itinerant electrons interact with a lattice of localized elec-
tron spins, believed to reside on dXY orbitals of Ti near the in-
terface layer (3, 4). The index i represents the local moment sites,

whose concentration we take as a phenomenological parameter.
The spin operators Si≡ 1

2 d
+
i σ di represent the local moment spins

and si≡ 1
2 c

+
αiσ cαi are the spin operators constructed from the

itinerant electrons. Here, σ are Pauli matrices acting in the elec-
tron spin space, whereas di and cαi are two component spinor
operators in this space representing the localized and itinerant
electrons, respectively. The chemical potential μ sets the density of
the itinerant electrons and λ is a Lagrange multiplier that fixes the
density of the localized electrons.
The dispersion matrix e(k) is the same as considered in the

supplement to ref. 1.
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where ml = 0.7 me and mh = 15 me. In addition to nearest-
neighbor hopping, we have included a diagonal hopping term
Δd =m−1

h that couples the dXZ and dYZ orbitals. ΔE = 47 meV is
the energy offset of the dXY band. The atomic spin–orbit cou-
pling is described by the local quadratic Hamiltonian

HSO =ΔSO

X
j;α;α′

cαj+ Lαα′·σcjα′;

where Lαα′ are the l = 2 angular momentum matrices projected
to the space of the three t2g orbitals (see also the supporting
information in ref. 1). Finally, the coupling to an external in-
plane magnetic field is given by the Hamiltonian

HH = − μBH·
X
j

cαj+ ðLαα′ ⊗ I + gI⊗ σÞcjα′:

The first term above is the coupling of the magnetic field to the
orbital angular momentum, the second is the Zeeman term, I
represents a unit matrix either in spin or orbital space, and g is
the bare electronic g factor.
To understand the quantum ground states of this model, we use

a variational mean-field approximation in the spirit of the stan-
dard large N mean-field theory of the Kondo lattice (see for
example ref. 5). The variational wavefunction is generated from
a quadratic mean-field Hamiltonian
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Here, H0 includes all of the quadratic terms in Eq. S1. χ is the
singlet hybridization field, which describes collective screening
of the moment spins (6). The parameters Mα and Md account
for the induced magnetization on the itinerant bands and the
local moments, respectively. We assume M2 = M3 to preserve
orbital symmetry.
We solve for the variational parameters by minimizing the

expectation value of the full Hamiltonian (Eq. S1) with respect to
χ, M1, M2, and Md, where the expectation value is taken with the
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ground state of the mean-field Hamiltonian (Eq. S2). In other
words, we seek the solution of the following set of equations:
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These equations are supplemented by two additional equations
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which fix the number of itinerant and localized electrons in-
dependently.
In the main text, we argued that the diverging critical field

obtained from this model (gray line in Fig. 3C) is consistent with
a transition from a Kondo phase to a magnetically polarized
phase. Indeed, the set of variational equations (Eq. S3) has two
distinct solutions: one where χ is finite which is identified with
the Kondo or “heavy liquid” phase, and the other where χ is
strictly zero and the moments are fully polarized. The theoretical
fit to the critical field presented in Fig. 3C is obtained by com-
paring the energy of these two variational wavefunctions as
a function of the applied field H, using nd = 2.6 × 1012 cm−2, JK =
900 meV, and JH = 625 meV. This approach predicts that the
transition is of first order, that is, the value of χ at the transition
is finite (Fig. S5). Generically this should be expected because
both phases do not break any symmetry of the Hamiltonian (Eq.
S1). However, we point out that large N mean-field theories are
known to give spurious first-order transitions.

3. Why dXY Conduction Electrons Couple Antiferromagnetically to
Localized Moments Whereas dXZ/dYZ Conduction Electrons Couple
Ferromagnetically to Them. To understand why the dXY conduc-
tion electrons couple differently to localized moments compared
with the dXZ/dYZ , let us consider the on-site Hamiltonian of
a single local moment:
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Here, ndα is the density operator of the localized state, «α are the
single particle energies, U and U′ are the inter- and intraorbital
Hubbard interactions, respectively, and J is the Hund’s rule
coupling. The energies «α belong to the different orbital states
on the moment: e1 belongs to the dXY orbital and e2, e3 are the
energies of dXZ, dYZ (Fig. S4D). The splitting between these
states δ = e2 − e1 is unknown and might be large (3).
The effective magnetic coupling between conduction electrons

and the localized moments can be estimated in second-order
perturbation theory where the itinerant electron hops into a vir-
tual state on the localized site and back (Fig. S4). The hopping
along the z direction of a dXY itinerant electron into a dXY lo-
calized state on the moment has a small (“heavy”) hopping
amplitude, th (Fig. S4A), resulting in the following hybridization
Hamiltonian:
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This is exactly the hopping element responsible for the heavy
electronic mass in SrTiO3 (STO), and its smallness results from
the small overlap of the dXY wavefunctions along the z direction
(their lobes are in the XY plane). This process is possible only if
the hopping is to a state with spin antiparallel to the spin of the
localized moment. The intermediate energy of this second-order
process is approximately U + e1. Similarly, the localized electron

can hop into the conduction band and back with an intermediate
energy denominator ∼ e1; therefore, the coupling is antiferro-
magnetic (AFM) and is given by (6)
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For the dXZ/dYZ conduction electrons one can think of two
processes; the first is where the conduction electrons hop into
higher unoccupied states at the moment’s site with the same
orbital symmetry (Fig. S4B), which is described by the following
hybridization Hamiltonian:

H23
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X
i

X3
α= 2

�
dαi
+cαi + h:c:

�
:

In this case, electrons with both parallel and antiparallel spin
with respect to the spin of the localized moment can hop in.
However, due to the Hund’s coupling, the hopping to states
with parallel spin alignment will have a smaller energy de-
nominator U′ + e2 − J, compared with hopping to states
with antiparallel spin alignment, whose energy denominator is
U′ + e2 + J. The resulting effective coupling between the dXZ,
dYZ itinerant electrons and the localized moment is therefore
ferromagnetic and is given by
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The dXZ/dYZ itinerant electrons can also hop to a dXY state on the
localized site through a next-nearest-neighbor diagonal hopping
processes with amplitude td (Fig. S4C)
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where ηαii′ = signði− i′Þ and is nonzero only if i − i′ is along y
and α = 2 or along x and α = 3. This hybridization is the same
as the diagonal hopping which hybridizes the dXZ and dYZ in the
plane (see the supplement to ref. 1). Just as the process de-
scribed in Fig. S4A, this process too will give rise to an anti-
ferromagnetic superexchange coupling. However, this coupling
is negligible compared with the ferromagnetic (FM) coupling
for two reasons. The first is that the hopping processes from the
two sides of the moment have opposite signs and therefore in-
terfere destructively. The second is that the hopping element td is
an order of magnitude smaller than the light hopping
tl responsible for the FM coupling in Fig. S4B.

4. Detailed Gate Dependence of Hall Resistivity for Sample in Main
Text. In Fig. 4B we showed, as a 3D plot, the dependence of the
anomalous Hall effect (AHE), ρAHE

XY , in the density–field plane
after subtracting out the low-field slope from the measured an-
tisymmetric component of the transverse resistivity ρA

XY . The
AHE thus obtained, ρAHE

XY = ρA
XY −Htot·dρA

XY=dHtot, was negligibly
small for low fields but showed a step that developed rapidly
above a critical field. Here, we show the raw dataset of ρA

XY as
a function of the total field Htot and density without the sub-
traction procedure.
The various gate voltages used to tune the density correspond

to the individual line traces in Fig. S3. At the highest gate voltages
used so that the carrier density was well above the Lifshitz critical
density, the ρA

XY trace (red) is linear in Htot at low fields. Around
H jj

C = 2:5T it rises sharply, and at higher fields it once again
stabilizes on a gradual linear dependence on Htot. The slope at
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these higher fields is comparable, yet slightly smaller than that at
low fields. As the gate voltage is decreased and the density is
lowered in the system, two changes are immediately apparent in
the shape of the line trace: whereas the low-field slope remains
almost fixed, the step in ρA

XY occurs at a larger H jj
C and the size of

the step is also larger. At fields Htot >H jj
C, once again the Hall

resistivity ρA
XY settles on a slope that is slightly smaller compared

with its low-field value. These trends progressively continue as
the gate voltage is decreased further (red through orange, green,
and cyan traces), until H jj

C > 14T and the step lies outside our
maximum applied field, leaving only the initial rise of the step to
be seen (blue to purple traces). Finally, the density falls just
below the critical density (brown and black traces) and ρA

XY re-
mains completely linear up to the highest field. Thus, the buildup
of the AHE at H jj

C and the divergence of this critical field at the
Lifshitz density, characteristic features of the LaAlO3 (LAO)/
STO system reported in the main text, are also clearly visible in
the raw data.
A notable feature common to all of the traces is that they ride

on a slope that has approximately the same value for all of them.
This observation can be traced to the fact that the slope of the
Hall resistivity, i.e., the Hall coefficient, at low values of the
perpendicular field is inversely proportional to the number of
high-mobility dXY carriers (1). Because the field is applied almost
in-plane, its perpendicular component is quite small even up to
the maximum applied value of Htot = 14T. The overall slope of
the traces shown in Fig. S3 is therefore determined by the density
of carriers in the dXY band, which remains fixed at the critical
density for all densities of the total number of carriers exceeding
this value (red to purple traces). In fact, because the gate is not
tuned significantly below the critical value, even the lowest density
(brown and black) traces shown in Fig. S3 do not have a signifi-
cantly larger slope compared with the high-density traces.

5. Phase Diagram for a 10 unit cells (uc) Sample and Another 6-uc
Device. In the main text, we presented AMR and AHE data from
a 6-uc sample grown at Tgrowth=800 °C. Here, we show similar
results obtained in a 10-uc sample, grown at a different tem-
perature, Tgrowth = 650 °C. Specifically, we show that the density
dependence of the critical field extracted from AMR and AHE
measurements across samples is similar.

Fig. S1A shows the critical field HC
jj extracted from the posi-

tion of the step in AHE measurements on a high-mobility 10-uc
sample. In these AHE measurements, the field was applied at an
angle of θ = 0.7° to the plane of the interface. We find that HC

jj

increases as the LAO/STO system is progressively depleted.
Plotting the reciprocal of this field, 1/HC

jj, we find that at low
densities the data points collapse onto a single line that ex-
trapolates to zero in the vicinity of the critical density associated
with the Lifshitz transition (Fig. S1B). Exactly the same trends are
also seen from AMR measurements on another Hall device on
the same sample reported in the main text: HC

jj appears to di-
verge at the critical density (Fig. S1 C and D). Thus, as shown in
the main text, not only is the critical field determined from AMR
and AHE similar (Figs. 3A and 4B), but this observation holds
even across samples, where HC

jj appears to be divergent in the
vicinity of the Lifshitz transition characteristic for each sample.

6. Methods. Sample fabrication. As detailed in earlier work (7),
films were grown on TiO2-terminated (001) SrTiO3 single
crystals of dimensions 5 mm × 5 mm by pulsed laser deposition
in ∼10−4 mbar of O2. The repetition rate of the laser was 1 Hz,
with the fluence of each pulse being 0.6 J cm−2. The film growth
was monitored in situ using reflection high-energy electron
diffraction. The 6-uc (/10-uc) sample was grown at T= 800 °C
(T= 650 °C). After growth, the samples were annealed in 200
mbar of O2 at about 600 °C (/530 °C) for 1 h and cooled to room
temperature in the same oxygen pressure. Hall bars were pho-
tolithographically patterned and the sample was ultrasonically
bonded using Al wire.
Measurements. We used back-gated Hall bars with widths ranging
from 100 to 500 um, oriented along the (100) crystallographic
direction. Current (amplitude of 46 nA at frequencies ranging
from dc to 13 Hz) was passed along this direction, and the lon-
gitudinal and transverse resistivities (ρXX and ρXY) were mea-
sured while rotating the sample in a magnetic field applied in the
plane of the interface at temperatures of T = 2 K. The absence of
nonlinear effects was confirmed by ensuring similar data were
measured despite lowering the amplitude of the current by an
order of magnitude. The possibility of nonequilibrium effects
was ruled out by testing different durations of wait time after
perturbing the system and subsequently using, in the data ac-
quisition, a wait time for which the system had relaxed.
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Fig. S1. Phase diagram for additional 10-uc sample and another 6-uc device. (A) Hjj
C and (B) 1=Hjj

C extracted from anomalous Hall effect measurements of a
10-uc sample, as a function of total carrier density. (C) Hjj

C and (D) 1=Hjj
C from AMR of another device on the 6-uc sample of the main text, vs. density.
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Fig. S2. Comparison of parallel and perpendicular critical fields. Hjj
C taken from Fig. 3C (solid red circles) and scaling perpendicular field (blue circles), reported

previously (1), bear remarkable similarity both in their magnitude and in their trend as a function of total carrier density in the system.

-15 -10 -5 0 5 10 15

-40

-30

-20

-10

0

10

20

30

40

H [T]tot

ρ X
Y

A
[Ω

]

T=2 K

Htot

θ=0.8 deg

H sinθtot 

critical
density

V [V]G

420
360
280
200
120
40
 20

Fig. S3. Hall resistance ρAXY as a function of nearly in-plane field Htot for various gate voltages. At densities much above the Lifshitz value (high gate voltages),
the traces have a step at a critical field. The traces become completely linear as the density is tuned from above to below the Lifshitz critical density (low gate
voltages). (Inset) Geometry of the measurement.
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A B

C D

Fig. S4. Schematic representation of the hopping processes between localized and itinerant electronic states. The first few TiO2 layers are occupied by the
localized states of dXY symmetry whereas subsequent TiO2 layers, further away from the interface, hold itinerant electrons that can be of either dXY, dXZ, or dYZ

symmetry. (A) Hopping between the dXY itinerant electron and a dXY localized state. This process has a small heavy hopping amplitude th, because the lobes of
the wavefunctions are perpendicular to the hopping direction. (B) Hopping between the dYZ itinerant electron and the unoccupied dYZ state on the moment
site. This process has a large “light” amplitude tl, because the lobes of the wavefunctions are pointing in the hopping direction. (C) Hopping between the dYZ

itinerant electrons and the dXY localized state is only allowed through a next-nearest-neighbor diagonal hopping process (1), with amplitude td that is
comparable to the heavy hopping amplitude. (D) Resulting exchange coupling. The energy diagram of the moment state is shown, whose occupied dXY state is
lower in energy by δ compared with the unoccupied dXZ and dYZ states. The process in A gives an AFM superexchange between itinerant dXY electrons and the
localized moment. The virtual hopping process in B, together with local Hund’s coupling on the localized state, yields an effective FM coupling between dXZ

and dYZ electrons and the localized moment. The latter process has a large energy denominator (δ), but on the other hand involves much larger hopping
amplitude tl � th, td. Because the exchange terms are quadratic in the hopping amplitudes, this term would be quite large.

A B

Fig. S5. Magnetic-field–driven transition from “heavy liquid” phase to polarized phase, given by the variational calculation. The average magnetization of
the moment band j〈Sx〉j and the singlet hybridization χ/JK plotted as a function of the applied magnetic field H for (A) itinerant electron density n = 1 × 1013

cm−2 (below the Lifshitz density) and (B) n = 2 × 1013 cm−2 (above the Lifshitz density). At a critical value H = Hc, χ jumps to zero whereas 〈Sx〉 jumps to its
maximum value. For both A and B, the parameters are nd = 2.6 × 1012 cm−2, JK = 900 meV, and JH = 625 meV.
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