Supporting Information

Goh et al. 10.1073/pnas.1304046110

SI Materials and Methods

Immunofluorescence. For immunofluorescence studies, liver tissue was fixed in 4% (vol/vol) paraformaldehyde for 2 h, transferred to a 30% sucrose solution (vol/vol) overnight at 4°C, and subsequently frozen in optimal cutting temperature (OCT) medium. To stain for GFP, frozen tissue sections (5 μ m) were fixed in 4% paraformaldehyde (vol/vol), permeabilized, and then stained with anti-GFP antibody (1:1,000, Novus Biologicals). A tyramide

signal amplification kit was used to amplify the GFP signal (Perkin-Elmer).

ALT and Necrotic Area Quantification. Serum alanine aminotransferase (ALT) levels were measured using an ALT-SL kit (Genzyme Diagnostics). To quantify necrotic cell area, liver sections were stained with H&E, and 10 random fields from each animal were analyzed, using ImageJ software.

Fig. S1. Immune cell repertoire of regenerating livers. (*A* and *B*) Liver regeneration after partial hepatectomy (PH) or toxin-induced injury [carbon tetrachloride (CCl₄)] is associated with recruitment of innate immune cells. Infiltration by innate immune cells was analyzed 2 d after PH or CCl₄-mediated injury (n = 4 mice per group). (*C* and *D*) The percentages of adaptive immune cells were analyzed 2 d after PH and CCl₄-mediated injury in wild-type (WT) BALB/cJ mice (n = 4 mice per group). (*E* and *F*) Expression of eotaxin-1 (*Ccl11*) after PH and/or CCl₄-mediated injury (n = 3-8 mice per group and time). *P < 0.05, as determined by Student *t* test. All data are presented as mean \pm SEM.

Fig. S2. Flow cytometric gating strategy for the identification of the immune cell repertoire of regenerating livers. Nonparenchymal cells were isolated from digested livers and gated for side- and forward-scatter (SSC/FSC), doublets, and live cells before the analysis of various cell surface markers of innate or adaptive immune cells. The following antibodies were used to identify eosinophils [sialic acid-binding Ig receptor (Siglec F)], mast cells (CD117 and Fc&RI), neutrophils (Ly6G and CD11b), macrophages (F4/80 and CD11b), dendritic cells (CD11c), T cells (CD3, CD4 and CD8), NK cells (CD49b), and B cells (B220).

Fig. S3. Liver regeneration in WT and Δ dblGATA mice. (*A*) Liver/body weight ratio in WT and Δ dblGATA mice 72 h after partial hepatectomy. (*B*) Serum levels of ALT at the indicated times after administration of CCl₄. (*C*) Representative H&E staining of liver sections from WT and Δ dblGATA mice 2 d after administration of CCl₄. (*P* = 4–5 mice per genotype). ***P* < 0.01 and ****P* < 0.001, as determined by Student *t* test. All data are presented as mean \pm SEM.

Fig. 54. Flow cytometric quantification of eosinophils. Eosinophils, which are identified as being Siglec-F⁺CD11b⁺, were enumerated in IL-4 reporter mice (4get mice) and Δ dblGATA/4get livers after partial hepatectomy (A) or CCl₄-induced injury (B).

Fig. S5. Flow cytometric gating and quantification of IL-4-producing cells in regenerating livers. Immune cells competent for IL-4 secretion were identified in 4get mice 2 d after partial hepatectomy (*A*) or CCl₄ administration (*B*). Nonparenchymal cells were isolated and gated for SSC/FSC doublets, and live cells before the analysis of the CD45⁺ population. GFP+ cells, which are competent for IL-4 secretion, were subsequently analyzed for expression of markers of eosinophils, mast cells, basophils, CD4⁺ T, cells or NK cells.

Fig. S6. Eosinophils are the predominant IL-4-producing cells in regenerating livers. Cells competent for IL-4 secretion were analyzed in WT, 4get, or Δ dblGATA/4get mice 2 d after partial hepatectomy (*A*) or CCl₄-induced liver injury (*B*).

Fig. 57. Evaluation of CCl₄-induced liver injury in WT and IL-4/IL-13^{-/-} mice. (A) Liver/body weight ratios in WT and IL-4/IL-13^{-/-} mice 72 h after partial hepatectomy. (*B*) Necrotic area in WT and IL-4/IL-13^{-/-} mice 2 d after CCl₄ administration. (*C*) Serum ALT levels of WT and IL-4/IL-13^{-/-} mice at indicated times after injection of CCl₄. Data pooled from 3 independent experiments. **P* < 0.05, ***P* < 0.01, ****P* < 0.005, as determined by Student *t* test. All data are presented as mean \pm SEM.

Fig. S8. Deletion of IL-4R α in myeloid cells and hepatocytes. (A) Expression of IL-4R α on peritoneal macrophages of *IL4R\alpha^{L/L}, IL4R\alpha^{L/L}LysM^{Cre} (IL4R\alpha floxed allele crossed with Cre recombinase driven by Lysozyme 2 promoter), and IL4R\alpha^{-/-} mice. (B) Expression of alternative activation marker CD301 in peritoneal macrophages. <i>IL4R\alpha^{L/L}, IL4R\alpha^{L/L}LysM^{Cre}*, and IL4R $\alpha^{-/-}$ mice that were given a single injection of IL-4 and CD301 expression were analyzed by flow cytometry on peritoneal macrophages 48 h later. (C) Serum levels of ALT in *IL4R\alpha^{L/L} and IL4R\alpha^{L/L}LysM^{Cre} mice at indicated times after injection of CCl₄ (n = 4-5 per genotype and time). (D and E) Expression of IL-4R\alpha in primary hepatocytes isolated from <i>IL4R\alpha^{L/L} and IL4R\alpha^{L/L}Alb^{Cre} (IL4R\alpha floxed allele crossed with Cre recombinase driven by Albumin promoter) mice; quantitative RT-PCR analysis of IL-4R\alpha mRNA (D) and immunoblot analysis of IL-4R\alpha protein (E). *P < 0.05, **P < 0.01.*

Fig. 59. IL-4R α signaling in hepatocytes is required for liver regeneration after injury. (*A*) Representative liver sections from $IL4R\alpha^{LL}$ and $IL4R\alpha^{LL}$ and for BrdU 36 h after partial hepatectomy. (*B*) Representative liver sections from $IL4R\alpha^{LL}$ and $IL4R\alpha^{LL}$ and $IL4R\alpha^{LL}$ and for BrdU 36 h after partial hepatectomy. (*B*) Representative liver sections from $IL4R\alpha^{LL}$ and $IL4R\alpha^{LL}$

Fig. S10. Treatment with IL-4 protects mice from CCl₄-induced liver damage. (A) Serum levels of ALT in vehicle (Veh) and IL-4-treated mice after administration of CCl₄. (*B*) Representative liver sections from Veh and IL-4 mice were stained for K_167 3 d after administration of CCl₄. (*C*) Representative H&E staining of liver sections from Veh and IL-4-treated mice 3 d after administration of CCl₄ (n = 4-5 mice per genotype). *P < 0.05, as determined by Student *t* test. All data are presented as mean \pm SEM.

<

GO term	Gene no.	Genes	<i>P</i> value
GO:0022403~cell cycle phase	16	DBF4, TPX2, KIF18A, CDC23, NUSAP1, ANLN, CDC20, RAD51, C79407, NCAPD2, CCNR1, PIK1, SPAG5, F630043A04RIK, CDC42, H2AEX	1.53E-07
GO:0000279∼M phase	15	TPX2, KIFBA, CDC23, NUSAPI, ANLN, CDC20, RD51, C79407, NCAPD2, CCNP1 PI K1, SEGGE FEADARAMATARIK CPCAP H24FK	1.57E-07
GO:0022402~cell cycle process	17	DBF4, TPX2, KF18A, CDC23, NUSAP1, ANLN, CDC26, RAD51, C79407, NCAPD2 CCN81 D1 K1 SPG55 GSR38 F630043A0A81K CDC22 H2AFX	2.79E-07
GO:0000280~nuclear division	12	CONBI, PLKI, SPAGS, F630043A04RIK, KIF18A, CDCA2, CDC23, NUSAP1, CDC20, ANIN, NICAPD3, 754047	7.79E-07
GO:0007067∼mitosis	12	COURT, PKIN, NAGAN, COURT, CUSAN, COURT, PKI, SPAGS, CDC23, NUSAP1, COPCJO, ANIN, MAGPJ, F630043A04RIK, KIF18A, CDCA2, CDC23, NUSAP1, CDCJO, ANIN, MADPJ, TOAAA7	7.79E-07
GO:000087∼M phase of mitotic cell cycle	12	COBI, PKI, SPAGS, F630043A04RIK, KIF18A, CDCA2, CDC23, NUSAP1, CDC20, ANIN, MCAD7, 773407	9.58E-07
GO:0048285~organelle fission	12	CCUB1, PLANCIN, SPAG5, F630043A04RIK, KIF18A, CDCA2, CDC23, NUSAP1, CDC20, ANI N. MCAPD2, 703407	1.11E-06
GO:0000278~mitotic cell cycle	13	DBF4, KIF18, CDC23, NUSAP1, ANLN, CDC20, C79407, NCAPD2, CCNB1, SPAG5, PIK1, F630043A04RIK, CDCA2	1.36E-06
GO:0007049∼cell cycle	19	PRC1, DBF4, KIF18A, TPX2, CDC23, NUSAP1, ANLN, CDC20, CHEK2, RAD51, C79407. NCAPD2, CCNB1, PLK1, SPAG5, GSK3B, FG30043A04RIK, CDCA2, H2AFX	5.15E-06
GO:0051301~cell division	13	PRC1, CDC23, NUSAP1, ANLN, CDC20, C79407, NCAPD2, CCNB1, SPAG5, PLK1, F630043404RIK, CDC42, TOP2A	5.87E-06
GO:0001944~vasculature development	10	EDNRA, TCF21, HIF1A, HEY1, SOX18, COL1A1, FIGF, ENG, MMP2, COL5A1	3.27E-04
GO:0001568~blood vessel development	6	EDNRA, HIF1A, HEY1, SOX18, COL1A1, FIGF, ENG, MMP2, COL5A1	0.001291533
GO:0007018~microtubule-based movement	9	KIF23, KIF22, KIF2C, KIF4, KIF18A, TUBE1	0.00185112
GO:0007017~microtubule-based process	8	KIF23, KIF22, KIF2C, KIF4, TPX2, KIF18A, TUBE1, NUSAP1	0.00242658
GO:0007169~transmembrane receptor	7	GRB10, IRS2, TIAM1, PDGFRB, FGF20, FIGF, CSF1R	0.006565756
protein tyrosine kinase signaling pathway			
GO:0033554~cellular response to stress GO:0048754~branching morphonenesis	о Г	KIF22, HIF1A, RAD23A, G5K3B, MAPK8IP2, H2AFX, KRT20, CHEK2, FEN1, RAD51 EDNRA_TCF21_GPC3_ENG_PXN	0.008592196
of a tube	5		
G0:0007167~enzyme-linked receptor	8	GRB10, IRS2, TIAM1, PDGFRB, FGF20, FIGF, ENG, CSF1R	0.00973147
protein signaling pathway			
GO:0030198~extracellular matrix organization	5	HSPG2, ADAMTS2, COL5A1, APLP1, EMILIN1	0.01156676
GO:0010171~body morphogenesis	m	GPC3, COL1A1, MMP2	0.01282836
GO:0030261~chromosome condensation	ĸ	NUSAP1, TOP2A, NCAPD2	0.015421729
GO:0035239~tube morphogenesis	9	ednra, tcf21, GPC3, HIF1A, ENG, PXN	0.01666417
GO:0032963~collagen metabolic process	ĸ	HIF1A, ADAMT52, MMP2	0.01679561
GO:0060346~bone trabecula formation	2	COL1A1, MMP2	0.01729348
GO:0007059~chromosome segregation	4	F630043A04RIK, KIF18A, NUSAP1, TOP2A	0.01811848
GO:0044259~multicellular organismal	£	HIF1A, ADAMTS2, MMP2	0.018219658
macromolecule metabolic process			
GO:0030814~regulation of cAMP	4	EDNRA, ADCY6, TIMP2, ADORA1	0.02044769
metabolic process GO:0044236~multicellular organismal	m	HIF1A, ADAMTS2, MMP2	0.021214429
metabolic process			
GO:0000910~cytokinesis	c	PRC1, NUSAP1, ANLN	0.02278327

N 10

10.10

·~ ~ ~

Table S1. GO terms associated with genes that were differentially expressed in WT and IL-4/IL-13^{-/-} mice

PNAS PNAS

7 (of 8
-----	------

Table S1. Cont.			
GO term	Gene no.	Genes	P value
GO:0010648~negative regulation of	9	DKK3, GRB10, GPC3, PAWR, RGS16, ADORA1	0.023038383
cell communication GO:0001763~morphogenesis of a	5	EDNRA, TCF21, GPC3, ENG, PXN	0.023458806
branching structure GO:0030799~regulation of cyclic	4	EDNRA, ADCY6, TIMP2, ADORA1	0.025577753
nucleotide metabolic process GO:0007242~intracellular signaling cascade	15	USP8, BAIAP2, ADCY6, IQGAP3, CHEK2, ADORA1, STK3, PXN, RLN1,	0.027155727
GO:0006140~regulation of nucleotide	4	TIAM1, G5K3B, MAPK8IP2, H2AFX, DEPDC1B, GADD45B EDNRA, ADCY6, TIMP2, ADORA1	0.02742748
metabolic process	г	INVE JINJ CJANKACK KEJIL CJEJ KCIJE KURGI	
	~ 0	EDNRA, ICF21, GFC3, TIF1A, ADAIM132, ENG, FAN	CC220C/20.0
GO:0001525~angiogenesis	пю	COLIDAT, ADAMITIZE, COLIDAT EDNRA, HIFTA, SOX18, FIGF, ENG	0.028620776
GO:0048514~blood vessel morphogenesis	9	EDNRA, HIF1A, HEY1, SOX18, FIGF, ENG	0.029144189
GO:0043062~extracellular structure organization	ъ	HSPG2, ADAMTS2, COL5A1, APLP1, EMILIN1	0.040830616
GO:0001957~intramembranous ossification	2	COL1A1, MMP2	0.042679218
GO:0007507~heart development	9	EDNRA, HIF1A, ALPK3, HSPG2, ENG, COL5A1	0.044917917
GO:0008285~negative regulation of cell proliferation	9	GPC3, PPARG, PAWR, TIMP2, ADORA1, H19	0.045637208

PNAS PNAS

GO, gene ontology.