
Supplementary Note:
Best method for miRNA-seq normalization still to be

resolved

Xiaobei Zhou1,2, Alicia Oshlack3, and Mark D. Robinson1,2,*

1Institute of Molecular Life Sciences, University of Zurich, Winterthurerstrasse
190, CH-8057 Zurich, Switzerland

2SIB Swiss Institute of Bioinformatics, University of Zurich, Zurich, Switzerland
3 Murdoch Childrens Research Institute, Royal Children’s Hospital, Flemington

Road, Parkville, Victoria 3052, Australia
* to whom correspondence should be addressed (mark.robinson@imls.uzh.ch)

This document accompanies our Letter to the Editor titled “Best method for miRNA-seq nor-
malization still to be resolved”, where we discuss the limitations of the Garmire and Subramaniam’s
manuscript comparing miRNA-seq normalization methods (referred to hereafter as GS; Garmire
and Subramaniam 2012). Here, we give reproducible examples of the comments made in the Letter
and these should run on a recent version of R with associated packages (See Section “Environment”
below for the exact R and package libraries that this report was generated from).

1 Preliminaries

In this Section, we download the data (“F-data”; Fehniger et al. 2010) that GS used to compute
various performance metrics. First, we download the original Excel file given as Supplementary
Material:

> f1 <- "http://genome.cshlp.org/content/suppl/2010/09/15/gr.107995.110.DC1/"

> f2 <- "Fehniger_Supplemental_Tables_final.xls"

> f <- paste(f1, f2, sep = "")

> # download XLS file if not already done

> if(!file.exists(f2))

+ download.file(f, f2)

Next, we read the multiple sheets from the Excel file, selecting the miRNA-seq count and
qPCR datasets, both of which get used in the following Sections and do some manipulations of the
miRNA identifiers.

> library(gdata)

> sheets <- list(seq = 1, qpcr = 7)

> d <- lapply(sheets, function(u) read.xls(f2, sheet = u))

1



> # pull out sequencing count table

> Seq <- as.matrix(d$seq[,c(6,4)])

> rownames(Seq) <- as.character(d$seq$miR.ID)

> colnames(Seq) <- c("active", "resting")

> # pull out qPCR data

> cols <- grep("Avg.Delta.Ct*", colnames(d$qpcr))

> Pcr <- as.matrix(d$qpcr[,cols])

> Pcr[Pcr > 15] <- NA

> colnames(Pcr) <- unlist(d$qpcr[1,cols-3],use.names=FALSE)

> # manipulate the id strings

> z <- strsplit(as.character(d$qpcr$Detector),"-")

> z <- mapply(function(u,v) paste(u[-v], collapse="-"),

+ z, sapply(z,length))

> rownames(Pcr) <- gsub("R","r",z)

So that the reader can follow the operations below on these datasets, a look at the top few rows
of each given here:

> head(Seq,3)

active resting

mmu-mir-21 112074 395295

mmu-mir-16 38358 103759

mmu-mir-142-5p 48334 81317

> head(Pcr,3)

rest G1 active G1 rest G2 active G2 rest G3 active G3 rest G4 active G4

MammU6 NA NA NA NA NA NA NA NA

U87 5.093 6.150 6.478 6.678 7.211 7.051 6.437 7.061

Y1 10.560 10.136 12.485 NA 12.130 11.415 13.457 NA

Therefore, each dataset is simply a table where rows represent features (here, miRNAs) and
columns represent samples (the sequencing data in this example has no replication and thus only
2 columns).

Below, we match the two datasets together, based on the miRNA identifiers. Here, we leave the
miRNA-seq count dataset intact and append a corresponding miRNA-qPCR dataset (with same
dimensions, unmatched miRs as rows with NAs). We then create a simple list object containing:
i) raw counts; ii) depth-normalized counts; and, iii) depth-normalized with any rows containing 0s
blanked out.

> m <- match(rownames(Seq), rownames(Pcr))

> # raw

> fdat <- list(Seq=Seq, Pcr=Pcr[m, ])

> # depth-normalized

> cs <- colSums(fdat$Seq, na.rm=TRUE)

> fdat$Seq_norm <- t( t(fdat$Seq) / cs )

> # 0-rows removed

> fdat$Seq_ndrop0 <- fdat$Seq_norm

> remove <- rowSums(fdat$Seq_ndrop0==0)>0

> fdat$Seq_ndrop0[remove,] <- NA

2



2 Supplementary Note S1: use of TMM normalization

Here, we describe how to use TMM normalization in the context of an edgeR differential expression
(DE) analysis. As mentioned, TMM “normalization” preserves the raw count data. It estimates
an effective library size and uses this as an offset in the model used for statistical testing. These
factors are calculated using the calcNormFactors function:

> library(edgeR)

> D <- DGEList(fdat$Seq, group = c("active","resting"))

> D <- calcNormFactors(D, method = "TMM")

> D$samples

group lib.size norm.factors

active active 462680 1.1302485

resting resting 1249614 0.8847612

The norm.factors element stores the additional factors (here, 1.13 for active and 0.885 for
resting), which get multiplied by the library size to construct the “effective library size”.

In the 2-sample situation, one can look at the effect of TMM normalization factors directly. If
the ratio of interest is active versus resting, the relative effect of normalization factors on log-fold-
changes (M-values) is log2(0.885/1.13) = −0.3533. This is consistent with the decrease in “bias”
shown in our re-analysis (Supplementary Figure 1, right panel, black arrow; more details below).
Specifically, the bias after TMM normalization is reduced by approximately −0.3533, while the
original GS article shows an increase in bias of the same amount; therefore, the authors had simply
introduced the normalization factor in the wrong direction.

It is worth noting that, in a standard DE analysis, the TMM normalization factors are handled
directly by the software. For the exploration of adjusted M-values (log-fold-changes), users should
use the cpm, that calculates counts per million and can optionally include the additional scaling
factors. More details are available within the online documentation by typing ?cpm.

3 Reproducing GS’s performance metrics

In order to reproduce the results for a variety of normalization methods, we created several func-
tions. The details of these are important, but in the interest of readability, we leave the code itself
to the “R code” Section below. The functions defined include:

1. findMA - takes a count dataset and calculates M (log-fold-change) and A (expression-strength)
values.

2. calcMetrics - takes the normalized data and computes GS’s performance metrics, such as
bias, MSE and variance.

3. img, msePlot, arrow - accessory plotting functions

Three different procedures for processing F-data are possible: raw (without any change), depth-
normalized (total tag counts normalized) and 0-rows removed (removing rows with a count equal
to 0). We have found that “0-rows removed” is most similar to GS’s results (compare left and
right panels in Supplementary Figure 1; other data not shown). As mentioned, this result begs
the question of how to apply all these methods in practice, since features with 0 counts should not
simply be discarded.

3



> methods <- c("raw","global","lowess","TMM","scale","quan","VSN")

> names(methods) <- methods

> # apply normalization methods

> ma_fdat <- lapply(methods, findMA, dat = fdat$Seq_ndrop0, lib.size = FALSE)

vsn2: 361 x 2 matrix (1 stratum). Please use 'meanSdPlot' to verify the fit.

> f_mse <- calcMetrics(ma_fdat)

> f_mse["bias",c("raw","TMM")]

raw TMM

0.5666465 0.2278065

> diff(f_mse["bias",c("raw","TMM")])

TMM

-0.33884

> par(mfrow=c(1,2), mai=c(0.4,0.3,0.3,0.4))

> img("MSE.png")

> msePlot(f_mse, "0-rows removed")

> arrow(f_mse, "TMM", "mse", "red")

> arrow(f_mse, "TMM", "bias", "black")

> abline(h=f_mse["mse","global"],col="blue")

author 0−rows removed

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

mse
var
bias

ra
w

glo
ba

l

low
es

s
TM

M
sc

ale qu
an

VSN

Supplementary Fig 1: Performance metrics for F-data. The left panel is taken from Figure 3 of
the GS manuscript. The right panel is reproduced using the same data, with the correct TMM
implementation. A blue line is added to the MSE value of global normalization, since GS used
global normalization as the reference point. Arrows highlight the result of using the correct TMM
implementation; specifically, TMM bias (black) and MSE are both decreased.

After the correct introduction of normalization factors, Supplementary Figure 1 illustrates
that TMM is an average method, but an improvement over raw. However, it should be noted that
TMM combined with (edgeR) statistical testing has a clear path to interpretable P-values, whereas
it is not clear how non-linear methods that remove any 0 observations, such as VSN, quantile and
lowess should be used in downstream count-based testing frameworks.

4



4 Supplementary Note S2: KS-test 0-values for quantile

normalization

As mentioned in the Letter, we question the validity of Kolmogorov-Smirnov test as a performance
metric, since a perfect score (KS-test=0) can be achieved for quantile normalization if there are no
ties, or if ties are not treated in a different way. This can be illustrated with the following code:

> library(limma)

> nq1 <- normalizeQuantiles(fdat$Seq_ndrop0)

> ks.test(nq1[,1], nq1[,2])$statistic

D

0.02430556

> nq2 <- normalizeQuantiles(fdat$Seq_ndrop0, ties=FALSE)

> ks.test(nq2[,1], nq2[,2])$statistic

D

0

5 Supplementary Note S3: ROC analysis sensitive to“truth”

The (miRNA-seq) F-data comes with corresponding miRNA-qPCR data. This independent read-
out can be used to determine a (normalization) method’s ability to distinguish between true positive
(TP) and true negative (TN) miRNAs, in terms of their DE. One standard approach to do this,
which GS adopted, is receiver operating characteristic (ROC) curves.

We show here that choices made in determining the set of TPs and TNs can have a strong
impact on the ROC analysis. This result calls into the question the distinguishability of relative
performance through ROC analysis for this dataset.

Altogether, there are four qPCR replicates for each sample (activated and rested). Many
approaches are possible for calling DE from the qPCR data, including the mean (or median)
differences, or t-statistics on the ∆∆Ct values between the groups of samples. In addition, various
thresholds can be applied to determine the TPs and TNs. The approach adopted here is to set 2
thresholds, such that the average (or median) absolute logFC is > a to be deemed a TP and < b
to be deemed a TN (a ≥ b).

We created a function called plotROC (See “R code” Section below) that takes the data and
plots ROC curves. First, we calculate the“true”change in expression, based on the mean or median
differences in the qPCR data:

> # ROC curve

> library(Biobase)

> ai <- grep("active",colnames(fdat$Pcr))

> ri <- grep("rest",colnames(fdat$Pcr))

> pcr_med <- rowMedians(fdat$Pcr[,ai]) - rowMedians(fdat$Pcr[,ri])

> pcr_mean <- rowMeans(fdat$Pcr[,ai]) - rowMeans(fdat$Pcr[,ri])

5



Next, in the interest of simplicity, we focus only on ROC curves for “raw”, “TMM” and “quan”
(quantile normalization) across a handful of different cutoffs for a and b:

> par(mfrow=c(2, 2), mai =c(0.4, 0.3, 0.3, 0.4))

> m_fdat <- lapply(ma_fdat, function(x) x[, "M"])[c("raw", "quan", "TMM")]

> plotRoc(m_fdat, pcr_mean, .999, 1, main = "mean dCT")

> plotRoc(m_fdat, pcr_mean, 0.6, 1.15, main = "mean dCT")

> plotRoc(m_fdat, pcr_med, .999, 1, main = "median dCT")

> plotRoc(m_fdat, pcr_med, 0.6, 1.1, main = "median dCT")

mean dCT:DE==|logFC|> 1 ; nonDE==|logFC|< 0.999

False positive rate

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

raw
quan
TMM

mean dCT:DE==|logFC|> 1.15 ; nonDE==|logFC|< 0.6

False positive rate

Tr
ue

 p
os

iti
ve

 r
at

e

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

raw
quan
TMM

median dCT:DE==|logFC|> 1 ; nonDE==|logFC|< 0.999

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

raw
quan
TMM

median dCT:DE==|logFC|> 1.1 ; nonDE==|logFC|< 0.6

Tr
ue

 p
os

iti
ve

 r
at

e

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

raw
quan
TMM

Supplementary Fig 2: ROC plots of raw, TMM and quantile normalization based on F-data using
different thresholds. Upper panels are based on mean differences in ∆∆Ct, whereas the bottom
panels use median differences in ∆∆Ct.

From Supplementary Figure 2, we make the following observations: i) TMM performs on par
and sometimes better than quantile normalization; ii) the results are somewhat sensitive to the
choice of threshold to determine TPs/TNs and the choice of metric used to summarize the qPCR
data.

6



6 Environment

This document was created using the following R version and associated packages:

> sessionInfo()

R version 2.15.1 (2012-06-22)

Platform: x86_64-apple-darwin9.8.0/x86_64 (64-bit)

locale:

[1] de_CH.UTF-8/de_CH.UTF-8/de_CH.UTF-8/C/de_CH.UTF-8/de_CH.UTF-8

attached base packages:

[1] grid stats graphics grDevices utils datasets methods

[8] base

other attached packages:

[1] ROCR_1.0-4 gplots_2.11.0 MASS_7.3-22 KernSmooth_2.23-8

[5] caTools_1.14 gtools_2.7.0 fields_6.7 spam_0.29-2

[9] png_0.1-4 vsn_3.26.0 Biobase_2.18.0 BiocGenerics_0.4.0

[13] edgeR_3.0.7 limma_3.14.3 gdata_2.12.0

loaded via a namespace (and not attached):

[1] affy_1.36.0 affyio_1.26.0 BiocInstaller_1.8.3

[4] bitops_1.0-4.2 lattice_0.20-10 preprocessCore_1.20.0

[7] tools_2.15.1 zlibbioc_1.4.0

7 R code

The detail of findMA and other functions:

> # define a function to compute M-values and A-values

> findMA <- function(dat, method, lib.size = FALSE){

+ require(edgeR)

+ require(limma)

+ require(vsn)

+ x <- dat[, 1]

+ y <- dat[, 2]

+ if(lib.size){

+ x <- x/sum(x)

+ y <- y/sum(y)

+ }

+ M <- log2(x) - log2(y)

+ A <- (log2(x) + log2(y))/2

+ M[which(is.infinite(M))] <- NA

+ A[which(is.infinite(A))] <- NA

+

+ switch(method,

+ raw = {M = M},

+ global = {M=M-mean(M, na.rm = TRUE)},

+ quan = {count = normalizeQuantiles(dat)},

+ TMM = {keep <- rowSums(is.na(dat))==0

7



+ D <- DGEList(dat[keep,], group = c(1,2))

+ D <- calcNormFactors(D, method = "TMM")

+ cpms <- cpm(D, normalized.lib.sizes = TRUE)

+ M[keep] <- log2(cpms[,1]/cpms[,2])},

+ scale = {count <- normalizeBetweenArrays(dat,method="scale")},

+ VSN = {count <- suppressWarnings(normalizeVSN(dat))

+ count <- 2^(count)},

+ lowess = {MA <- new("MAList", list(A = A,M = M))

+ nMA <- normalizeWithinArrays(MA, method = "loess")

+ M <- as.vector(nMA$M)})

+ if(exists("count")){

+ x <- count[, 1]

+ y <- count[, 2]

+ if(lib.size){

+ x <- x/sum(x)

+ y <- y/sum(y)

+ }

+ M <- log2(x) - log2(y)

+ A <- (log2(x) + log2(y))/2

+ M[which(is.infinite(M))] <- NA

+ A[which(is.infinite(A))] <- NA

+ }

+ cbind(A = A, M = M)

+ }

> calcMetrics <- function(object)

+ sapply(object, function(x)

+ c(mse = mean(x[,2]^2,na.rm=TRUE),

+ var = var(x[,2],na.rm=TRUE),

+ bias = mean(x[,2],na.rm=TRUE)))

> img <- function(object) {

+ require(png)

+ pic <- readPNG(object)

+ r <- as.raster(pic[,,1:3])

+ r[pic[,,4] == 0] = "white"

+ plot(1:2,type="n",xlab="",ylab="",xaxt="n",yaxt="n",main="author")

+ rasterImage(r,1,1,2,2)

+ }

> msePlot <- function(u, v) {

+ cl <- c(1,0,gray(0.5))

+ barplot(u,beside=TRUE,col=cl,main=v,ylim=c(0,2.5), xaxt="n",xlab="")

+ legend("topright",rownames(u),fill=cl,cex=0.6)

+ text(4*seq(colnames(u))-1,par("usr")[3],

+ labels=colnames(u),srt=45,adj=1,xpd=TRUE)

+ }

> arrow <- function(u, v, w, acol) {

+ require(fields)

+ ids <- which(names(methods)==v)

+ x <- ids + 3*(ids-1)

+ x <- switch(w, "mse"=x, "var"=x+1, "bias"=x+2)

+ y <- u[w, v]

+ arrow.plot(x+0.5,y+0.3,0,-1,col=acol,length=0.1,

8



+ arrow.ex=0.1,lwd=2)

+ }

> plotRoc <- function(x, y, min, max, main = NULL) {

+ makePosNeg <- function(value, qpcr, min, max){

+ stopifnot( min <= max)

+ label <- cut(abs(qpcr), c(0, min-(1e-8), max, Inf))

+ levels(label) <- 1:3

+ keep <- label %in% c(1,3) & !is.na(value)

+ data.frame(value=value, label=label)[keep, ]

+ }

+ plotROCList <- function(object, title, lwd=2) {

+ require(ROCR)

+ n <- length(object)

+ perfs <- lapply(object, function(u) {

+ p <- prediction(abs(u$value), u$label, label.ordering=c(1,3))

+ performance(p,"tpr","fpr")

+ })

+

+ for (i in 1:n)

+ plot(perfs[[i]], add=(i>1), main=title, lwd=lwd, col=i, cex.main=.7)

+ abline(0,1,lty=2)

+ legend("bottomright", names(object), lty=1, col=1:n, lwd=lwd)

+ }

+

+ title <- paste("DE==|logFC|>", max, "; nonDE==|logFC|<", min)

+ if( !is.null(main))

+ title <- paste(main, title, sep=":")

+

+ label <- lapply(x, makePosNeg, qpcr=y, min=min, max=max)

+ plotROCList(label, title)

+ }

References

Todd A Fehniger, Todd Wylie, Elizabeth Germino, Jeffrey W Leong, Vincent J Magrini, Sunita
Koul, Catherine R Keppel1, Stephanie E Schneider, Daniel C Koboldt, Ryan P Sullivan,
Michael E Heinz, Seth D Crosby2, Rakesh Nagarajan3, Giridharan Ramsingh, Daniel C Link,
Timothy J Ley, and Elaine R Mardis. Next generation sequencing identifies the natural killer
cell microRNA transcriptome. Genome Res, 20:1590-16, 2010.

Lana Xia Garmire and Shankar Subramaniam. Evaluation of normalization methods in mammalian
microRNA-Seq data. RNA Society, 18(6):rna.030916.111–, 2012. ISSN 13558382. doi: 10.1261/
rna.030916.111. URL http://rnajournal.cshlp.org/cgi/doi/10.1261/rna.030916.111.

9

http://rnajournal.cshlp.org/cgi/doi/10.1261/rna.030916.111

	Preliminaries
	Supplementary Note S1: use of TMM normalization
	Reproducing GS's performance metrics
	Supplementary Note S2: KS-test 0-values for quantile normalization
	Supplementary Note S3: ROC analysis sensitive to ``truth''
	Environment
	R code

