SUPPLEMENTARY ONLINE DATA Activation of IP₃ receptors requires an endogenous 1-8-14 calmodulin-binding motif Yi SUN^{1,2}, Ana M. ROSSI¹, Taufig RAHMAN and Colin W. TAYLOR³ Department of Pharmacology, University of Cambridge, Cambridge CB2 1PD, U.K. | | | | 1 8 14 | | | |--------------|--------------------|-----|----------------------------|-----|----| | MLCK peptide | | | RRKWQKTGHAVRAIGRL | | +6 | | 1-8-14 cons | ensus | | 1XXX5XX8XXXXX14 | | | | rat | IP3R1 | 46 | LNNPPKKFRDCLFKLCPMNRYSAQKQ | 71 | +4 | | rat | IP ₃ R2 | 46 | LTNPPKKFRDCLFKVCPMNRYSAQKQ | 71 | +4 | | rat | IP ₃ R3 | 45 | LDNPPKKFRDCLFKVCPMNRYSAQKQ | 70 | +4 | | chicken | IP3R1 | 46 | LNNPPKKFRDCLFKLCPMNRYSAQKQ | 71 | +4 | | chicken | IP ₃ R2 | 48 | LANPPKKFRDCLFKVCPMNRYSAQKQ | 73 | +4 | | chicken | IP ₃ R3 | 45 | LDNPPKKFRDCLFKVCPMNRYSAQKQ | 70 | +4 | | frog | IP3R1 | 46 | LNNPPKKFRDCLFRLCPMNRYSAQKQ | 71 | +4 | | frog | IP ₃ R2 | 46 | LANPPKKFRDCLFKVCPMNRYSAQKQ | 71 | +4 | | frog | IP ₃ R3 | 45 | LDNPPKKFRDCLFRVCPMNRYSAQKQ | 70 | +4 | | Drosophila | IP3R | 49 | LSCPPKKFRDCLIKICPMNRYSAQKQ | 74 | +4 | | C. elegans | IP ₃ R | 124 | PESPPKKFRDCLFKVCPVNRYAAQKH | 149 | +4 | | rabbit | RyR1 | 59 | PP-DLAICCFTLEQSLSV | 75 | -2 | | rabbit | RyR2 | 59 | PP-DLSICTFVLEQSLLV | 75 | -2 | | rabbit | RvR3 | 59 | PP-DLCVCNFVLEOSLSV | 75 | -2 | Figure S1 A conserved 1-8-14 motif in all IP₃Rs and RyRs Alignments (with first and last residues numbered) of the N-terminal region of rat IP₃R3 (SwissProt accession numbers NP_001007236, NP_112308 and NP_037270 respectively), chicken IP3R1-IP3R3 (SwissProt accession numbers XP_414438, XP_001235613 and XP_418035 respectively), Xenopus IP3R1-IP3R3 (SwissProt accession numbers NP_001084015, ABP88141 and ABP88140 respectively), Drosophila IP₃R (SwissProt accession number NP_730942), Caenorhabditis elegans IP₃R (SwissProt accession number NP_001023170) and rabbit RyR1–RyR3 (SwissProt accession numbers P11716, P30957 and Q9TS33 respectively) highlighting the residues proposed to form a 1-8-14 CaM-binding motif. The consensus sequence for a 1-8-14 motif is shown in the first row, with its three critical (1, 8 and 14 hydrophobic residues) and net charge of +3 to +6. A similar 1-8-14 motif is conserved in all IP₃R, which closely resembles a type A (1-5-8-14) motif, where position 5 is also a large hydrophobic residue. The motif within IP₃Rs differs from a classic 1-8-14 consensus sequence by having a tyrosine residue at position 14. All subtypes of RyR also have a similar 1-8-14 motif within a similar position in the three-dimensional structure, although the sequence lacks the usual net positive charge of a consensus 1-8-14 motif. ¹ These authors contributed equally to this work. Present address: Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, U.K. ³ To whom correspondence should be addressed (email cwt1000@cam.ac.uk). Figure S2 Mutation of a non-critical residue (K52E) within the 1-8-14 motif has no effect on IP $_3$ binding or IP $_3$ -evoked Ca $^{2+}$ release (A) Structure of the SD of IP $_3$ R1 (PDB code 1XZZ) highlighting the 1-8-14 motif (red), the critical 1-8-14 hydrophobic residues (blue) and Lys 52 (yellow). (B) Equilibrium competition binding of IP $_3$ (with 0.75 nM [3 H]IP $_3$) to native NT and NT KS2E . (C) IP $_3$ -evoked Ca 2 + release from DT40-IP $_3$ R1 and DT40-IP $_3$ R1 KS2E cells. Results are means \pm S.E.M. ($n \geqslant 3$). ## Table S1 Peptides used in the present study All peptides were synthesised by Sigma or New England Peptide. The isolelectric point (pl) is shown for each peptide calculated from http://www.innovagen.se/custom-peptide-synthesis/peptide-property-calculator/peptide-property-calculator.asp. Ac, acetyl. | Peptide | Sequence | Source | pl | |---------------------|---|--|------| | MLCK | Ac-RRKWQKTGHAVRAIGRL-NH ₂ | Ca ²⁺ –CaM-binding site of smooth muscle MLCK | 14.0 | | 1-8-14 | Ac-KKFRDALFKLAPMNRY-NH2 | Fragment of IP ₃ R1 (residues 51–66) containing the 1-8-14 motif | 11.6 | | 1-8-14 ^C | Ac-KK e rdalfklapmnr e -NH ₂ | Inactive form of 1-8-14 peptide (mutations highlighted in bold and underlined) | 10.8 | | 1-8-14 ^S | Ac-AMRFLKYLPKRFDKNA-NH ₂ | Scrambled form of 1-8-14 peptide | 11.6 | | 1-8-14 ^L | Ac-LNNPPKKFRDALFKLAPMNRYSAQKQFWKA-NH ₂ | Longer fragment of IP ₃ R1 (residues 46–75) containing the 1-8-14 motif | 11.7 | ## Table S2 Primers used in the present study Primers used for introducing mutations in the N-terminal fragment or full-length IP_3R1 . The mutated bases are highlighted. | Primer | Sequence $(5' \rightarrow 3')$ | | | | | |--|--|--|--|--|--| | F53E Forward
F53E Reverse
L60E Forward
L60E Reverse
Y66E Forward
Y66E Reverse | GGGGACCTTAACAATCCACCCAAGAAA GAG AGAGACTGCCTCTT AAGAGGCAGTCTCT CT TTTCTTGGGTGGATTGTTAAGGTCCCC GAAATTCAGAGACTGCCTCTTTAAG GAG TGCCTCTAGAATCGATATTCTGCA TGCAGAATATCGATTCATAGGACACCCTCCTTAAAGAGGCAGTCTCTGAATTTC CTCTTTAAGCTATGTCCTATGAATCGAGACATCGCTACAGAAGCAG CTGCTTCTGTGCAGACTCTCTCGATTCATAGGACATAGCTTAAAGAG | | | | | | K52E Forward
K52E Reverse | AACAATCCACCCAAG GAA TTCAGAGACTGCCTC
GAGGCAGTCTCTGAA <u>TTC</u> CTTGGGTGGATTGTT | | | | | Received 26 June 2012/13 September 2012; accepted 26 September 2012 Published as BJ Immediate Publication 26 September 2012, doi:10.1042/BJ20121034