

SUPPLEMENTARY ONLINE DATA Activation of IP₃ receptors requires an endogenous 1-8-14 calmodulin-binding motif

Yi SUN^{1,2}, Ana M. ROSSI¹, Taufig RAHMAN and Colin W. TAYLOR³

Department of Pharmacology, University of Cambridge, Cambridge CB2 1PD, U.K.

			1 8 14		
MLCK peptide			RRKWQKTGHAVRAIGRL		+6
1-8-14 cons	ensus		1XXX5XX8XXXXX14		
rat	IP3R1	46	LNNPPKKFRDCLFKLCPMNRYSAQKQ	71	+4
rat	IP ₃ R2	46	LTNPPKKFRDCLFKVCPMNRYSAQKQ	71	+4
rat	IP ₃ R3	45	LDNPPKKFRDCLFKVCPMNRYSAQKQ	70	+4
chicken	IP3R1	46	LNNPPKKFRDCLFKLCPMNRYSAQKQ	71	+4
chicken	IP ₃ R2	48	LANPPKKFRDCLFKVCPMNRYSAQKQ	73	+4
chicken	IP ₃ R3	45	LDNPPKKFRDCLFKVCPMNRYSAQKQ	70	+4
frog	IP3R1	46	LNNPPKKFRDCLFRLCPMNRYSAQKQ	71	+4
frog	IP ₃ R2	46	LANPPKKFRDCLFKVCPMNRYSAQKQ	71	+4
frog	IP ₃ R3	45	LDNPPKKFRDCLFRVCPMNRYSAQKQ	70	+4
Drosophila	IP3R	49	LSCPPKKFRDCLIKICPMNRYSAQKQ	74	+4
C. elegans	IP ₃ R	124	PESPPKKFRDCLFKVCPVNRYAAQKH	149	+4
rabbit	RyR1	59	PP-DLAICCFTLEQSLSV	75	-2
rabbit	RyR2	59	PP-DLSICTFVLEQSLLV	75	-2
rabbit	RvR3	59	PP-DLCVCNFVLEOSLSV	75	-2

Figure S1 A conserved 1-8-14 motif in all IP₃Rs and RyRs

Alignments (with first and last residues numbered) of the N-terminal region of rat IP₃R3 (SwissProt accession numbers NP_001007236, NP_112308 and NP_037270 respectively), chicken IP3R1-IP3R3 (SwissProt accession numbers XP_414438, XP_001235613 and XP_418035 respectively), Xenopus IP3R1-IP3R3 (SwissProt accession numbers NP_001084015, ABP88141 and ABP88140 respectively), Drosophila IP₃R (SwissProt accession number NP_730942), Caenorhabditis elegans IP₃R (SwissProt accession number NP_001023170) and rabbit RyR1–RyR3 (SwissProt accession numbers P11716, P30957 and Q9TS33 respectively) highlighting the residues proposed to form a 1-8-14 CaM-binding motif. The consensus sequence for a 1-8-14 motif is shown in the first row, with its three critical (1, 8 and 14 hydrophobic residues) and net charge of +3 to +6. A similar 1-8-14 motif is conserved in all IP₃R, which closely resembles a type A (1-5-8-14) motif, where position 5 is also a large hydrophobic residue. The motif within IP₃Rs differs from a classic 1-8-14 consensus sequence by having a tyrosine residue at position 14. All subtypes of RyR also have a similar 1-8-14 motif within a similar position in the three-dimensional structure, although the sequence lacks the usual net positive charge of a consensus 1-8-14 motif.

¹ These authors contributed equally to this work.

Present address: Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, U.K.

³ To whom correspondence should be addressed (email cwt1000@cam.ac.uk).

Figure S2 Mutation of a non-critical residue (K52E) within the 1-8-14 motif has no effect on IP $_3$ binding or IP $_3$ -evoked Ca $^{2+}$ release

(A) Structure of the SD of IP $_3$ R1 (PDB code 1XZZ) highlighting the 1-8-14 motif (red), the critical 1-8-14 hydrophobic residues (blue) and Lys 52 (yellow). (B) Equilibrium competition binding of IP $_3$ (with 0.75 nM [3 H]IP $_3$) to native NT and NT KS2E . (C) IP $_3$ -evoked Ca 2 + release from DT40-IP $_3$ R1 and DT40-IP $_3$ R1 KS2E cells. Results are means \pm S.E.M. ($n \geqslant 3$).

Table S1 Peptides used in the present study

All peptides were synthesised by Sigma or New England Peptide. The isolelectric point (pl) is shown for each peptide calculated from http://www.innovagen.se/custom-peptide-synthesis/peptide-property-calculator/peptide-property-calculator.asp. Ac, acetyl.

Peptide	Sequence	Source	pl
MLCK	Ac-RRKWQKTGHAVRAIGRL-NH ₂	Ca ²⁺ –CaM-binding site of smooth muscle MLCK	14.0
1-8-14	Ac-KKFRDALFKLAPMNRY-NH2	Fragment of IP ₃ R1 (residues 51–66) containing the 1-8-14 motif	11.6
1-8-14 ^C	Ac-KK e rdalfklapmnr e -NH ₂	Inactive form of 1-8-14 peptide (mutations highlighted in bold and underlined)	10.8
1-8-14 ^S	Ac-AMRFLKYLPKRFDKNA-NH ₂	Scrambled form of 1-8-14 peptide	11.6
1-8-14 ^L	Ac-LNNPPKKFRDALFKLAPMNRYSAQKQFWKA-NH ₂	Longer fragment of IP ₃ R1 (residues 46–75) containing the 1-8-14 motif	11.7

Table S2 Primers used in the present study

Primers used for introducing mutations in the N-terminal fragment or full-length IP_3R1 . The mutated bases are highlighted.

Primer	Sequence $(5' \rightarrow 3')$				
F53E Forward F53E Reverse L60E Forward L60E Reverse Y66E Forward Y66E Reverse	GGGGACCTTAACAATCCACCCAAGAAA GAG AGAGACTGCCTCTT AAGAGGCAGTCTCT CT TTTCTTGGGTGGATTGTTAAGGTCCCC GAAATTCAGAGACTGCCTCTTTAAG GAG TGCCTCTAGAATCGATATTCTGCA TGCAGAATATCGATTCATAGGACACCCTCCTTAAAGAGGCAGTCTCTGAATTTC CTCTTTAAGCTATGTCCTATGAATCGAGACATCGCTACAGAAGCAG CTGCTTCTGTGCAGACTCTCTCGATTCATAGGACATAGCTTAAAGAG				
K52E Forward K52E Reverse	AACAATCCACCCAAG GAA TTCAGAGACTGCCTC GAGGCAGTCTCTGAA <u>TTC</u> CTTGGGTGGATTGTT				

Received 26 June 2012/13 September 2012; accepted 26 September 2012 Published as BJ Immediate Publication 26 September 2012, doi:10.1042/BJ20121034