SUPPLEMENTARY ONLINE DATA The dynamic action of SecA during the initiation of protein translocation Vicki A. M. GOLD¹, Sarah WHITEHOUSE, Alice ROBSON and Ian COLLINSON² School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, U.K. ## **MATERIALS AND METHODS** ## Steady-state ATPase and determination of the $K_{\rm m}$ Steady-state SecA ATPase measurements were performed as described previously [1,2] with various concentrations of ATP. The $K_{\rm m}$ and $V_{\rm max}$ ($k_{\rm cat}$) were determined by fitting the data to the Michaelis–Menten equation (eqn S1) $$v = \frac{V_{\text{max}} \cdot [S]}{K_{\text{m}} + [S]}$$ where ν is equal to the enzyme velocity, V_{max} is the total capacity of the substrate-associated ATPase stimulation, [S] is the substrate concentration and $K_{\rm m}$ is the Michaelis constant. ¹ Present address: Max-Planck-Institute of Biophysics, Department of Structural Biology, Max-von-Laue-Strasse 3, D-60438 Frankfurt am Main, Germany ² To whom correspondence should be addressed (email ian.collinson@bristol.ac.uk). Table S1 Kinetic parameters Various parameters derived from data fits (see individual Figure legends in the main text). The data for the clamp-closed SecA are shown in bold to emphasize the significant differences in this version. Errors represent S.D. values from the fit. | Condition | SecA-SecYEG _{soluble} | | SecA-SecYEG _{CL} | | SecA-ATP | | $\underline{SecA_{(2HF)}-SecY_{K268FI}EG_{soluble}}$ | | SecA-SecYEG _{vesicles} | | [SecA-pOA]—SecYEG _{vesicles} | | [SecA-SecYEG _{vesicles}]-pOA | | |----------------------------------|--------------------------------|-----------------------|---------------------------|-----------------------|--------------------------|-----------------------|--|----------------|---------------------------------|---------------------|---------------------------------------|------------------------|--|------------------------| | | 1
Κ _d (μM) | 2
k _{cat} | 3
K _d (nM) | 4
k _{cat} | 5
Κ _m (μΜ) | 6
k _{cat} | 7
K _d (nM) | 8
ΔFI (%) | 9
Κ _d (μΜ) | 10 k _{cat} | 11
K _d (μM) | 12
k _{cat} | 13
Κ _d (μΜ) | 14
k _{cat} | | Δcys | 7.6 ± 0.6 | 31.4 ± 0.6 | 3.7 ± 1.9 | 74.9 ± 3.5 | _ | _ | 18.4 ± 0.6 | 35.3 ± 0.2 | 1.13 ± 0.32 | 154.2 ± 22.0 | 0.26 ± 0.04 | 656.4 ± 31.0 | 0.50 ± 0.12 | 605.8 ± 38.3 | | $\Delta \text{cys} + \text{DTT}$ | 7.8 ± 1.4 | 25.0 ± 1.1 | 5.6 ± 0.6 | 82.7 ± 0.9 | _ | _ | 20.6 ± 2.1 | 36.0 ± 1.3 | 1.11 ± 0.26 | 149.4 ± 17.2 | 0.19 ± 0.03 | 631.6 ± 22.6 | 0.78 ± 0.10 | 604.6 ± 20.2 | | Clamp closed | 0.015 ± 0.011 | 23.2 ± 0.6 | - | _ | 1.7 ± 0.06 | 8.8 ± 0.08 | 28.6 ± 5.0 | 20.9 ± 1.4 | 0.029 ± 0.007 | 99.7 ± 3.0 | 0.025 ± 0.007 | 131.7 ± 4.5 | _ | _ | | Clamp released (c) | 6.3 ± 0.7 | 22.5 ± 0.7 | 8.8 + 2.1 | 59.1 + 1.9 | 0.11 + 0.02 | 0.54 + 0.02 | 117.7 + 12.7 | 23.5 + 0.8 | 0.34 + 0.20 | 59.4 + 8.2 | 0.13 + 0.02 | 253.6 + 10.0 | 0.24 ± 0.06 | 231.6 + 13.3 | | Clamp open | 5.9 ± 2.1 | 9.9 ± 0.5 | | | 0.10 ± 0.03 | 0.43 ± 0.02 | 60.9 ± 10.0 | 15.0 ± 0.6 | 0.65 ± 0.78 | 22.5 ± 7.8 | 0.17 ± 0.18 | 21.1 ± 3.5 | | | | Clamp released (o) | 6.0 ± 1.4 | 15.9 ± 0.6 | 6.5 ± 0.9 | 31.2 ± 0.4 | 0.23 ± 0.08 | 0.63 ± 0.05 | 59.5 ± 6.4 | 21.3 ± 0.6 | 0.65 ± 0.42 | 29.9 ± 6.4 | 0.13 ± 0.07 | 90.3 ± 9.7 | 0.35 ± 0.15 | 50.5 ± 4.7 | | Clamp released (c) + SecYEG | _ | | | _ | 1.8 ± 0.13 | 8.5 ± 0.17 | _ | _ | _ | _ | _ | _ | _ | _ | Figure S2 The consequences of the immobilization of the PPXD within SecA to protein transport The model of pre-protein transport (Figure 7A of the main text) has been modified to incorporate the intra- and inter-molecular disulfide bonds, and to explain their effect on the activity. Colour co-ordination and labelling is as in Figure 7 of the main text. Stages of the mechanism precluded as a result have been fogged out. (A) When the PPXD is cross-linked (purple bar) to the HSD the clamp is permanently held open. This prevents the activation of the ATPase activity (thin blue arrows), maintains a low affinity for SecYEG (small pale blue arrows) and prevents association with the pre-protein. (B) Fixing the PPXD to NBD2, holding the clamp closed, activates the ATPase activity (blue arrows), brings about a high-affinity association with SecYEG (large pale blue arrows), but prevents the engagement of pre-protein. (C) The pre-activated cross-linked SecA—SecYEG complex is primed for translocation and capable of pre-protein intercalation and ATP-driven (thick blue arrows) translocation. ## **REFERENCES** - Robson, A., Gold, V. A., Hodson, S., Clarke, A. R. and Collinson, I. (2009) Energy transduction in protein transport and the ATP hydrolytic cycle of SecA. Proc. Natl. Acad. Sci. U.S.A. 106, 5111–5116 - 2 Deville, K., Gold, V. A., Robson, A., Whitehouse, S., Sessions, R. B., Baldwin, S. A., Radford, S. E. and Collinson, I. (2011) The oligomeric state and arrangement of the active bacterial translocon. J. Biol. Chem. 286, 4659–4669 Received 20 August 2012/15 October 2012; accepted 5 November 2012 Published as BJ Immediate Publication 5 November 2012, doi:10.1042/BJ20121314