

SUPPLEMENTARY ONLINE DATA The dynamic action of SecA during the initiation of protein translocation

Vicki A. M. GOLD¹, Sarah WHITEHOUSE, Alice ROBSON and Ian COLLINSON²

School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, U.K.

MATERIALS AND METHODS

Steady-state ATPase and determination of the $K_{\rm m}$

Steady-state SecA ATPase measurements were performed as described previously [1,2] with various concentrations of ATP. The $K_{\rm m}$ and $V_{\rm max}$ ($k_{\rm cat}$) were determined by fitting the data to the Michaelis–Menten equation (eqn S1)

$$v = \frac{V_{\text{max}} \cdot [S]}{K_{\text{m}} + [S]}$$

where ν is equal to the enzyme velocity, V_{max} is the total capacity of the substrate-associated ATPase stimulation, [S] is the substrate concentration and $K_{\rm m}$ is the Michaelis constant.

¹ Present address: Max-Planck-Institute of Biophysics, Department of Structural Biology, Max-von-Laue-Strasse 3, D-60438 Frankfurt am Main, Germany

² To whom correspondence should be addressed (email ian.collinson@bristol.ac.uk).

Table S1 Kinetic parameters

Various parameters derived from data fits (see individual Figure legends in the main text). The data for the clamp-closed SecA are shown in bold to emphasize the significant differences in this version. Errors represent S.D. values from the fit.

Condition	SecA-SecYEG _{soluble}		SecA-SecYEG _{CL}		SecA-ATP		$\underline{SecA_{(2HF)}-SecY_{K268FI}EG_{soluble}}$		SecA-SecYEG _{vesicles}		[SecA-pOA]—SecYEG _{vesicles}		[SecA-SecYEG _{vesicles}]-pOA	
	1 Κ _d (μM)	2 k _{cat}	3 K _d (nM)	4 k _{cat}	5 Κ _m (μΜ)	6 k _{cat}	7 K _d (nM)	8 ΔFI (%)	9 Κ _d (μΜ)	10 k _{cat}	11 K _d (μM)	12 k _{cat}	13 Κ _d (μΜ)	14 k _{cat}
Δcys	7.6 ± 0.6	31.4 ± 0.6	3.7 ± 1.9	74.9 ± 3.5	_	_	18.4 ± 0.6	35.3 ± 0.2	1.13 ± 0.32	154.2 ± 22.0	0.26 ± 0.04	656.4 ± 31.0	0.50 ± 0.12	605.8 ± 38.3
$\Delta \text{cys} + \text{DTT}$	7.8 ± 1.4	25.0 ± 1.1	5.6 ± 0.6	82.7 ± 0.9	_	_	20.6 ± 2.1	36.0 ± 1.3	1.11 ± 0.26	149.4 ± 17.2	0.19 ± 0.03	631.6 ± 22.6	0.78 ± 0.10	604.6 ± 20.2
Clamp closed	0.015 ± 0.011	23.2 ± 0.6	-	_	1.7 ± 0.06	8.8 ± 0.08	28.6 ± 5.0	20.9 ± 1.4	0.029 ± 0.007	99.7 ± 3.0	0.025 ± 0.007	131.7 ± 4.5	_	_
Clamp released (c)	6.3 ± 0.7	22.5 ± 0.7	8.8 + 2.1	59.1 + 1.9	0.11 + 0.02	0.54 + 0.02	117.7 + 12.7	23.5 + 0.8	0.34 + 0.20	59.4 + 8.2	0.13 + 0.02	253.6 + 10.0	0.24 ± 0.06	231.6 + 13.3
Clamp open	5.9 ± 2.1	9.9 ± 0.5			0.10 ± 0.03	0.43 ± 0.02	60.9 ± 10.0	15.0 ± 0.6	0.65 ± 0.78	22.5 ± 7.8	0.17 ± 0.18	21.1 ± 3.5		
Clamp released (o)	6.0 ± 1.4	15.9 ± 0.6	6.5 ± 0.9	31.2 ± 0.4	0.23 ± 0.08	0.63 ± 0.05	59.5 ± 6.4	21.3 ± 0.6	0.65 ± 0.42	29.9 ± 6.4	0.13 ± 0.07	90.3 ± 9.7	0.35 ± 0.15	50.5 ± 4.7
Clamp released (c) + SecYEG	_			_	1.8 ± 0.13	8.5 ± 0.17	_	_	_	_	_	_	_	_

Figure S2 The consequences of the immobilization of the PPXD within SecA to protein transport

The model of pre-protein transport (Figure 7A of the main text) has been modified to incorporate the intra- and inter-molecular disulfide bonds, and to explain their effect on the activity. Colour co-ordination and labelling is as in Figure 7 of the main text. Stages of the mechanism precluded as a result have been fogged out. (A) When the PPXD is cross-linked (purple bar) to the HSD the clamp is permanently held open. This prevents the activation of the ATPase activity (thin blue arrows), maintains a low affinity for SecYEG (small pale blue arrows) and prevents association with the pre-protein. (B) Fixing the PPXD to NBD2, holding the clamp closed, activates the ATPase activity (blue arrows), brings about a high-affinity association with SecYEG (large pale blue arrows), but prevents the engagement of pre-protein. (C) The pre-activated cross-linked SecA—SecYEG complex is primed for translocation and capable of pre-protein intercalation and ATP-driven (thick blue arrows) translocation.

REFERENCES

- Robson, A., Gold, V. A., Hodson, S., Clarke, A. R. and Collinson, I. (2009) Energy transduction in protein transport and the ATP hydrolytic cycle of SecA. Proc. Natl. Acad. Sci. U.S.A. 106, 5111–5116
- 2 Deville, K., Gold, V. A., Robson, A., Whitehouse, S., Sessions, R. B., Baldwin, S. A., Radford, S. E. and Collinson, I. (2011) The oligomeric state and arrangement of the active bacterial translocon. J. Biol. Chem. 286, 4659–4669

Received 20 August 2012/15 October 2012; accepted 5 November 2012 Published as BJ Immediate Publication 5 November 2012, doi:10.1042/BJ20121314