
Appendix 1: Calculation of sperm content using pixel counting 

 

Sperm overlap with one another within the spermatophore, making sperm number 

very difficult to quantify. Therefore a programme was designed and written by Brian 

K. Birge (NASA) for estimating the percentage area of a spermatophore occupied by 

sperm using the numerical computing environment Matlab.  

 

The programme analyses digital images of spermatophores and counts pixels based 

upon brightness. Sperm are distinguishable as they are typically paler than the 

surrounding images. When making measurements we equalised the image contrast 

and converted the colours to grey scale. The boundary of the spermatophore 

excluding the tubular neck was manually marked. An arbitrary threshold was then 

chosen which on visual inspection classified sperm and non-sperm accurately. If the 

sperm were dispersed through a spermatophore then we were able to define a sub-

region of the spermatophore within which to count sperm pixels. This improved 

accuracy by avoiding the mis-counting of paler pixels as sperm in regions of the 

spermatophore where visual inspection revealed that there were none. 

 

The programme returned the percentage of the total spermatophore area that was 

occupied by sperm pixels. Using our independent measurements of sperm content 

(see Materials and Methods) we converted these percentages into absolute 

measurements, using the following equation,  
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Appendix 2: Model of optimal sperm allocation 

 

Background 

 

Suppose there are two types of females in the population: a proportion q of normal 

females, and a remaining proportion 1 – q of super-fecund females. The normal 

females have fecundity 1, while the super-fecund females have fecundity 1 + h. 

 

Strategy 

 

A male’s strategy is a vector s = (s1,ss) describing the quantity of resources he will 

assign to a mating with female types 1 and 2. Since both s1 and s2 must be positive 

real numbers, we can characterise a male’s strategy as being t = (s1,x), where x  is 

the (positive real) coefficient such that s2 = x s1. 

 

Males have two key parameters, their quantity of resources allocated to reproduction 

R, and the resource cost that they must pay to obtain a mating, c. A male’s strategy 

will be conditional upon these parameters, so that it will be a function s[R,c]. The 

optimal strategy for a male depends upon what the rest of the population is doing. 

We denote the mean population strategy as s  (s1,ys1) , where y is the (positive real) 

coefficient such that ys1  s2 . 

 

Fitness function 

 



The fitness function for a male with resources R, and cost c (hereafter referred to as 

an (R,c)-male) playing strategy s[R,c] is defined as, 

 

W[s,R,c s] n[s,R,c]v[s,R,c s]
,
 

 

where n[s,R,c] is the expected number of matings, and v[s,R,c s]  is the expected 

success per mating. If we denote the partial derivatives of W with respect to s1 and 

to s2 by W1 and W2 respectively, then a strategy s can only be a best reply to a 

population mean strategy s  if, 

 

W1[s,R,c s]W2[s,R,c s] 0 , 

 

and we also have that for i = 1,2, 

 

Wi[s,R,c s] ni[s,R,c]v[s,R,c s] n[s,R,c]vi[s,R,c s] 

 

where ni and vi refer to partial derivatives with respect to i. 

 

Number of matings 

 

We define the expected number of matings by, 

 

n[s,R,c]
R

c qs1  (1 q)s2
. 

 



This is the ratio of the quantity of resources that the male possesses to the average 

quantity of resources he uses per mating. This is an approximation to the expected 

number of matings given s, R, and c, but simulations showed it to be a reasonable 

approximation under a range of reasonable parameter values (results not shown). 

 

We then have, 

 

n1[s,R,c]
qR

(c qs1  (1 q)s2 )
2

, 

n2[s,R,c]
(1 q)R

(c qs1  (1 q)s2 )
2

, 

(1) 

 

so that n2 n1  (1 q) q . 

 

Success per mating 

 

The expected success per mating is then defined as 

 

v[s,R,c s ]
n ken
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qs1
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
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The term in brackets in the summand represents the expected success from mating 

with a randomly chosen female who also mates with k other males. With a probability 

q this female is a normal female, and the focal male invests s1 resources and 

receives expected success s1 (s1  ks1) , which is the proportion of total sperm the 



female receives that belongs to him. With a probability (1 – q), the female is super-

fecund, and the focal male invests s2 resources and receives expected success 

((1 h)s2 ) (s2  ks2 ) , which is the proportion of total sperm the female receives that 

belongs to him multiplied by her fecundity coefficient 1 + h. 

 

We then have that, 
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(2) 

 

Analysis 

 

Suppose there exists an evolutionary stable strategy (ESS) s  (s1
,s2

)  for each 

combination (R,c), and suppose the population is playing this strategy. Then the 

mean population strategy will be s  (s1
,s2

) (s1
,ys1

) . Since it is an ESS, this 

strategy must be a best reply to itself, i.e. for all (R,c) combinations, 

 

W1 s
[R,c],R,c s






W2 s

[R,c],R,c s 



  0 . 

 



Since W1 = 0, 

 

n1[s
,R,c]v[s,R,c s] n[s,R,c]v1[s1

,R,c s1
] 0 , 

 

which gives, 

 

v[s,R,c s

]

n[s,R,c]v1[s1
,R,c s1

]

n1[s
,R,c]

.  

(3) 

 

Also, 

 

n2[s
,R,c]v[s,R,c s


] n[s,R,c]v2[s2

,R,c s2
] 0 , 

 

which means, from (2) and (3), and then (1), 

 

1 h

y


v1[s1
,R,c s1

]

v1 x y s1,R,c s1




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(4) 

 

Since v1 is a sum of positive decreasing functions of s1, it is itself positive and 

decreasing in s1. Equation (4) shows that if y  (1 h) , then x  y  for all (R,c). But 

this is a contradiction because then the mean population strategy for the population 

is not equal to ys2
 . A similar contradiction occurs if y  (1 h) . Therefore if an ESS 



exists it must have x  y 1 h  for all (R,c), which implies that all males must invest 

(1 + h) times as much sperm in super-fecund females as they do in normal females. 

 

It can be proven that the ESS strategy exists and is always of this form, and also that 

it will always increase in c and be independent of R, but these details have been 

discussed previously in (Tazzyman et al. 2009) and are not necessary here. 

 


