
Derivation of the expressions for λmax
The shrunken centroid for all shrunken centroid based classifiers considered in the paper is
defined as

x,kj = xj + d̂kj ·mk · (sj + s0). (1)

The class-centroid for variable j for class k will be equal to the overall centroid when d̂kj = 0.

PAM
In PAM d̂kj is defined as

d̂kj = sgn(dkj)(|dkj| − λ)+, (2)

so we need to find a solution to

sgn(dkj)(|dkj| − λ)+ = 0, (3)

which is λ = |dkj|. In order to effectively remove variable j from the calculation of the dis-
criminant score, we must set the threshold parameter to λ = |dkj|, for each k. Setting λ to
maxk(|dkj|) will therefore remove the variable j from the calculation of the discriminant score.
It is then obvious that when λ = maxk,j(|dkj|), all class-centroids will be shrunken to the overall
centroid for each variable.

ALP-NSC
According to Theorem I in Wang and Zhu (2007) the numerical solutions to p minimization
problems
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In order to put all class centroids to the overall centroid for variable j then C = {1, ..., K}
and the eq. 6 simplifies to
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λ that puts d̂kj to zero for all k is then a solution to
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which yields
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In order to put all class centroids to the overall centroid for each j = 1, ..., p, then
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AHP-NSC
In Wang and Zhu (2007) the authors propose an iterative approach to estimate γj and θkj by
using
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and therefore it is necessary only to tune one of the shrinkage parameters, say λθ, and
setting λγ to zero. In this case γ̂1

j at the first step is
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which after setting θ1
kj = sgn(dkj) as proposed by the authors, yields to
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and the λθ that sets θ̂1
kj to zero (and in the second step then also γ̂2

j to zero) is then a
solution to
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It is then straightforward to show that the solution to the above expression is
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This will then set the centroid for class k and variable j to the overall centroid for variable
j. Setting
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will set all class centroids to the overall centroid for all variables.
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