Classification error and the probability of classification
for the example presented in the main text

Let x; = {1, ..., Tij, ..., Tip } denote an observation while X; = {X;1, ..., Xjj, ..., Xjp } is used for
random vector. For this special example we have X1; and Xy; are i.i.d N(0, 7711) and N (0, n%),
respectively, and Y* is independent of X*. Classification error is then
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or by analogy

error = my + P(C(X") = 2) — 2mP(C(X™) = 2), (2)

where P(C(X*) = 1) and P(C(X*) = 2) are the probabilities that the classifier C will classify
X* to class 1 and class 2, respectively. Since we have that the class-variances are known and
equal to one in both classes than the pooled variances are also known and equal to one, and
the discriminant score for class k£ omitting the class prior correction is then simply

p
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The probability that the sample is classified in class 1, neglecting the class-prior correction
is

P
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Denote X; = X7 — Xy; and Z; = X; — X,; and note that Xj ~ N(0,1+ n%) and Z; ~
N(0,1+ n%) Variables X = >"_, X7 and Z = YI_, Z7 are correlated and their covariance is

cov(X,Z) = cov (zp;(Xi)Q,f:l(Zj)?) :izp:cov (XE,ZJZ) Zcov X3, 72)
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The variance of X is
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and the variance of Z is then by analogy, var(Z) = 2p(1 + %2)2 The correlation between
X and Z is then

P cov(X,Z) _ 2p _ 1 .
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For p =1 we have

PC(X")=1) = P((X*=X1)’ < (X" = X))
= P(IX" =X < |X" = X,) (8)
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where ¢ = Vi The above integral can be solved analytically which yields
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For p > 1 we can write

PE(X") =1) = P(iX%ZZ?
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where U; = Y7, HJ ~ x5 and Uy = Y, o~ X;. Joarder (2007) derived the

probability density functlon (p.d.f.) of two correlated chi-square variables each with p degrees
of freedom,
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and we have,
P( }(>k = 1 // Ul,UQ>dU1dU2. (12)
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The above integral can not be solved analytlcally but we can use numerical methods to
solve it for our special case.
For a large p we can write



PC(X")=1) = P ((1 4 nl)U1 <1+ ;)U2)
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where X = 2U; ~ N(y2p—1,1) and Z = /20, ~ N(v/2p —1,1), for a large p. The

probability of classification in class 1 is then

PC(X*)=1) = / f;z o, @ D)z, (14)
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where f(Z,2) is a p.d.f of two correlated normally distributed random variables X and Z.
We can use numerical integration to solve the above integral for our special example.

Note that cor(y/2U;,+/2Us) = cor(Uy,Us) = cor(X, Z), since the correlation coefficient is
invariant under monotonic increasing transformation.



