From Pathophysiology to Novel Antidepressant Drugs: Glial Contributions to the Pathology and Treatment of Mood Disorders

Supplemental Information

Table S1. Postmortem studies examining glial cell pathology in brain regions associated with mood disorders.

BA24 & ACC								
DOWN	NO CHANGE	UP	UNIQUE					
Ongur et al. (1998) (1): Glial number markedly reduced in both MDD and BD. Most prominent reductions in subgroups of subjects with familial MDD and BD.	al number markedly reduced in both MDD d BD. Most prominent reductions in ogroups of subjects with familial MDD and between MDD, BD, SCH and CS							
Cotter et al. (2001) (4): Glial cell density reduced in layer 6 of MDD cases relative to CS. Some evidence for reduced glial density in layer 6 SCH cases, before adjusting for multiple layer-wise comparisons. There was no evidence for differences in glial density in BD.	Hercher <i>et al.</i> (2009) (6): No difference in BA24a glial cell density between MDD suicide and CS cases.		Choudary et al. (2005) (5): Microarray analyses demonstrate significant down-regulation of the genes coding for EAAT1, EAAT2 and glutamine synthetase in the area 24 of MDD subjects.					
Todtenkopf <i>et al.</i> (2005) (7): An analysis of 2 studies from the Benes laboratory demonstrated no significant difference in the dens In contrast, a single study employing the 3D optica reductions in glial density in layers III, V and VI of		Torres-Platas et al. (2011) (8): Hypertrophied fibrous astrocytes in a mix sample of MDD and BD cases compared to CS.						
Gittins et al. (2011) (9): Mix of MDD and BD cases showed a decreased density of glial cells across all layers and a reduction in GFAP in white matter in area 24b.	Khundakar et al. (2011) (10): No difference in glial, cell density within individual layers (2-5) or the supragenual anterior cortex as a whole in late-life depression.							

BA 9 &10								
DOWN	NO CHANGE	UP	UNIQUE					
Rajkowska <i>et al.</i> (2001) (11): Glial density reduced in sublayer IIIc in BD compared to non-psychiatric CS cases.	Toro et al. (2006) (12): No difference in GFAP immunoreactivity in area 9 of BD or MDD cases, but increased in SCH cases. No changes in GS immunoreactivity.		Johnston-Wilson <i>et al.</i> (2000) (13): Identified decreased levels of GFAP isoforms in MDD, BD and SCH in frontal cortex (BA10) compared with the non-psychiatric controls.					
Cotter et al. (2002) (14): Reductions in glial cell density in layer 5 of MDD subjects. Also glial cell density was reduced in layer 5 in schizophrenia but not BD.			Tkachev <i>et al.</i> (2003) (15): Reduction of key oligodendrocyte-related and myelin-related genes in SCH and BD; expression changes for both disorders showed a high degree of overlap. MDD was not evaluated.					
Uranova et al. (2004) (16): Significant reduction in numerical density of oligodendroglial cells was found in layer VI of subjects with SCH, BD and MDD as compared to controls. No change in adjacent white matter.			Ernst <i>et al.</i> (2009) (17): Expression of astrocyte-specific tropomyosin- related kinase-B receptor (TrkB.1) isoform and astrocyte connexins 30 and 43 are down- regulated area 10 suicide completers (areas 8,9,10).					
DLPFC								
DOWN	NO CHANGE	UP	UNIQUE					
Rajkowska et al. (1999) (18): Marked reductions in the density and size of neurons and glial cells were found in both supra- and infragranular layers DLPFC of MDD cases.	Khundakar et al. (2009) (19): No significant differences in glial density in the DLPFC as a whole.		Davis et al. (2002) (20): GFAP-immunoreactivity lower in DLPFC gray matter in layer V in MDD cases, but higher in DLPFC white matter compared to controls. GFAP- immunoreactivity significantly higher in layer I of the DLPFC in MDD cases vs. controls.					

Miguel-Hidalgo et al. (2000) (21): A significant strong positive correlation betwee age and GFAP immunoreactivity was found in cases. When the MDD group was divided into younger (30-45 years old) and older (46-86) a in the five younger MDD adults, areal fraction packing density were smaller than the smalles values of the CS in areas II+IV and V.	MDD dults, and		Ernst et al. (2011) (22): Reduced expression of astrocyte specific Cx30 and Cx43 in DLPFC of suicide completers with mixed diagnoses.		
Miguel-Hidalgo et al. (2002) (23): Glial density reduced in layers V and VI and in layers combined in the alcohol dependent cas The alcohol cases with depressive symptoms showed the lowest values of density. No differ in GFAP immunoreactivity was observed betw groups.	es. ence		Choudary et al. (2005) (5): Microarray analyses demonstrate significant down-regulation of the genes coding for EAAT1, EAAT2 and glutamine synthetase in areas 9 + 46 of MDD subjects.		
AMYGDALA			-		
DOWN	NO CHANGE	UP	UNIQUE		
Bowley et al. (2002) (24): Glial density and the glia/neuron ratio were substantially reduced in MDD cases. Average glia measures not reduced in BD cases; however, BD cases not treated with lithium or valproate had significant glial reduction. Similar but smaller changes were found in the entorhinal cortex.	Bezchlibnyk et al. (2007) (25): No change in number or density of glial cells in MDD, BD, or SCH cases.		Hamidi et al. (2004) (26): Follow up on Bowley et al. (2002) (24) found the density of total glia and oligodendrocytes in the amygdala was significantly lower in MDD than CS cases, but not significantly lower in BD compared with control subjects. The decreases were largely accounted for by differences in the left hemisphere. There was no significant decrease in astrocyte or microglia density in MDD or BD cases.		

HIPPOCAMPUS								
DOWN	NO CH	IANGE		UP	UNIQUE			
Muller et al. (2001) (28): Decreased GFAP-immunoreactive astrocytes in CA1 and CA2 areas, in MDD and steroid treated cases compared to CS. However, difference should be interpreted with caution.	No diff was ob (either	served in a s	3) (29): al number quantified in the DG small subset of MDD cases ot treated) compared to CS.	Stockmeier et al. (2004) (30): Glial density in the DG and all CA subfields are increased in MDD cases. Differences may be accounted for by a reduction of neuropil per cell.				
	No sigi		(31): ence in glial cell number CS cases in CA1, CA2/3, or					
LOCUS COERULEUS		1	1					
DOWN	NO CHANGE	UP	UNIQUE					
			Ordway et al. (2012) (32): Laser capture microdissection of astrocytes from the LC revealed that BMP7 gene expression was reduced in depression. BMP7 has unique developmental and trophic actions on catecholamine neurons and these findings suggest that reduced astrocyte support for pontine LC neurons may contribute to pathology of brain noradrenergic neurons in MDD.					
			Bernard et al. (2011) (33): Microarray gene expression findings reveal multiple signaling pathway alterations in the LC of MDD but not BD subjects. These include glutamate signaling genes, SLC1A2, SLC1A3 and GLUL, growth factor genes FGFR3 and TrkB, and several genes exclusively expressed in astroglia.					

BA, Brodmann area; BD, bipolar disorder; BMP7, bone morphogenetic protein 7; CS, control subject; DG, dentate gyrus; DLPFC, dorsolateral prefrontal cortex; EAAT1, 2, excitatory amino acid transporters 1 and 2; FGFR3, fibroblast growth factor receptor 3; GFAP, glial fibrillary acidic protein; GLUL, glutamate-ammonia ligase, coding for GS; GS, glutamine synthetase; LC, locus coeruleus; MDD, major depressive disorder; SCH, schizophrenia; SLC1A2, solute carrier family 1 member 2, coding for EAAT2; SLC1A3, solute carrier family 1 member 3, coding for EAAT1; TrkB, tyrosine-related kinase B, neurotrophin receptor.

Table S2. Studies examining riluzole's effects in mood and anxiety disorders

MDD									
Studies	Diagnosis	Design	Subjects	Age	Concomitant medications	Dose	Duration	Primary outcome measures	Secondary outcome measures
			M=Male F=Female when available	range and (mean) when available		Specified in protocol and (mean) when available	Specified in protocol		
Zarate et al. (2004) (34)	MDD,TRD	Open-label, Monotherapy	9M, 10F	18-70	Medication free for at least 1 week	50-200 mg/day (168.8)	6 weeks	Significant improvement in MADRS occurred on weeks 3 through 6.	CGI severity and HAM-A scores significantly improved weeks 3 through 6. Depression response rates at week 6 for all patients and trial completers were 32% and 46%, respectively. Remission rates at week 6 for all patients and completers were 21% and 31%, respectively.
Sanacora et al. (2007) (35)	MDD,TRD	Open-label, Augmentation	6M, 7F	21-65 (47.9)	Variety, majority on >2 antidepressant meds	100 mg/day (95.0)	6 week initial phase with an additional 6 week continuation	Significant improvement in HAM-D at week 6 endpoint.	Significant improvement in HAM-A over the period of the study. Depression response rates at week 6 were 40%. Remission rate was 30%. HAM-A scores by 31%. Significant reductions from baseline scores were seen as early as week 1 for both the HAM-D and HAM-A and remained significant for every week thereafter (all adjusted $p < .05$).
Mathew et al. (2010) (36)	MDD,TRD	Randomized 72 hrs post ketamine (0.5 mg/kg IV over 40 min) infusion and 300 mg lamotrigine or placebo by mouth, if meeting response criteria. Primary goal to determine if riluzole could delay time to relapse after ketamine response.	14 subjects 6 riluzole 8 placebo	21-70 (48.2)	None after ketamine / lamotrigine drug study	100–200 mg/day (116.7)	32 days	There were no differences in time-to- relapse between groups (log-rank $\chi^2 = 0.17$, $df =$ 1, $p = 0.68$)	Mean time-to-relapse for the riluzole group was 24.4 d (95% CI 15.9–33.0), while mean time-to-relapse for the placebo group was 22.0 d (95% CI 14.9–29.1). MADRS scores at study exit (LOCF) did not differ between groups.
lbrahim et al. (2012) (37)	MDD, TRD	Randomized 4-6 hrs post ketamine (0.5 mg/kg IV over 40 min) infusion.	42 subjects 21 riluzole 21 placebo	18–65 (47.2)	None after ketamine	100-200 mg/day (173.8)	4 weeks	Significant improvement in MADRS scores was found over time, but the differences between treatment groups and the interaction between time and treatment group were not significant.	Kaplan–Maier survival analysis showed a non-significant weak trend riluzole to extend to relapse (log rank test, $\chi^2 =$ 2.50, $p = 0.11$). Ketamine–riluzole group took 17.2 (SE = 3.1) days and the ketamine–placebo group took 9.8 days (SE = 2.8) to relapse on average.

BD										
Studies	Diagnosis	Desig	jn	Subjects	Age	Concomitant medications	Dose	Duration	Primary outcome measures	Secondary outcome measures
Zarate <i>et al.</i> (2005) (38)	BD I (<i>n</i> = 6), BD II (<i>n</i> = 8)	Open-label, Augmentation of lithium treatment		10M, 4F	18–70 (49.5)	Minimum of 4 weeks lithium treatment prior to riluzole	100-200 mg/day (171.4)	8 weeks	Significant decrease in MADRS at weeks 5–8.	Significant improvement in weeks 6–8 for the CGI. Scores on the YMRS did not change significantly during the study. The response and remission rates at week 8 were both 50%.
Brennan <i>et</i> <i>al.</i> (2010) (39)	BD I (<i>n</i> = 4), BD II (<i>n</i> = 10)	Open-label, Augmentation of mood stabilizing or antidepressant treatment for 7, monotherapy for 7		7M, 7F	18–65	Various mood stabilizers and antidepressants, excluding lithium and lamotrigine	100-200 mg/day (181.8)	6 weeks	Significant improvement on HAM-D scales for both longitudinal and endpoint analyses.	Highly significant decrease, with very large effect sizes (Cohen's d > 2.0), in MADRS, and CGI-S scores. YMRS scores decreased significantly in the end point analysis, but not in the random regression analysis.
OCD										
Studies	Diagnosis	Desig	jn	Subjects	Age	Concomitant medications	Dose	Duration	Primary outcome measures	Secondary outcome measures
Coric <i>et al.</i> (2005) (40)	OCD, treatment resistant, 10 patients with comorbid MDD	Open-label, Monotherapy		5M, 8F	18-65 (40.9)	Mixed SRIs	100 mg/day	6 weeks with extension to 12 weeks	Significant improvement in Y- BOCS over time.	HAM-D significantly decreased. HAM- A significantly decreased. CGI/GI significantly improved.
Grant <i>et al.</i> (2007) (41)	OCD, 5 with comorbid MDD Pediatric	Case series, Mixed monotherapy and augmentation		5M, 1F	8-16 (14.4)		Up to 120 mg/day (101)	12 weeks	39.3 +/- 19.7% reduction in Y-BOCs	4 subjects were considered "responders"
Pittenger <i>et al.</i> (2008) (42)	OCD, 9 with comorbid MDD	Case series, Augmentation		9M, 4F	42.3	Mix therapies	100 mg/day	12 Weeks	Average Y-BOCS decreased by 26%	6 subjects were considered "responders". Mean HAM-D decreased 28%. Mean HAM-A decreased by 31%.
GAD							-			
Studies	Diagnosis Design		Subjects	Age	Concomitant medications	Dose	Duration	Primary outcome measures	Secondary outcome measures	
Mathew e <i>t</i> <i>al.</i> (2005) (43)	GAD, but comorbid panic attacks, dysthymia, social anxiety disorder and specific phobia present in over 50% of the subjects		6M, 12F	33.6	Medication free for at least 2 weeks	100 mg/day	8 weeks	Significant improvement in HAM- A score across the duration of the trial.	Significant decrease in Mean Anxiety Sensitivity Index scores, and HAM-D scores at endpoint.	

BD, bipolar disorder; CGI, Clinical Global Impression; CI, confidence interval; GAD, generalized anxiety disorder; HAM-A, Hamilton Anxiety Rating Scale; HAM-D, Hamilton Depression Rating Scale; IV, intravenous; LOCF, last observation carried forward; MADRS, Montgomery-Asberg Depression Rating Scale; MDD, major depressive disorder; OCD, obsessive-compulsive disorder; SE, standard error; SRI, serotonin reuptake inhibitor; TRD, treatment resistant depression; Y-BOCS, Yale-Brown Obsessive Compulsive Scale; YMRS, Young Mania Rating Scale.

- 1. Ongur D, Drevets WC, Price JL (1998): Glial reduction in the subgenual prefrontal cortex in mood disorders. *Proc Natl Acad Sci* U S A. 95:13290-13295.
- 2. Chana G, Landau S, Beasley C, Everall IP, Cotter D (2003): Two-dimensional assessment of cytoarchitecture in the anterior cingulate cortex in major depressive disorder, bipolar disorder, and schizophrenia: evidence for decreased neuronal somal size and increased neuronal density. *Biol Psychiatry*. 53:1086-1098.
- 3. Webster MJ, O'Grady J, Kleinman JE, Weickert CS (2005): Glial fibrillary acidic protein mRNA levels in the cingulate cortex of individuals with depression, bipolar disorder and schizophrenia. *Neuroscience*. 133:453-461.
- 4. Cotter D, Mackay D, Landau S, Kerwin R, Everall I (2001): Reduced glial cell density and neuronal size in the anterior cingulate cortex in major depressive disorder. *Arch Gen Psychiatry*. 58:545-553.
- 5. Choudary PV, Molnar M, Evans SJ, Tomita H, Li JZ, Vawter MP, et al. (2005): Altered cortical glutamatergic and GABAergic signal transmission with glial involvement in depression. *Proc Natl Acad Sci U S A*. 102:15653-15658. Epub 12005 Oct 15617.
- 6. Hercher C, Parent M, Flores C, Canetti L, Turecki G, Mechawar N (2009): Alcohol dependence-related increase of glial cell density in the anterior cingulate cortex of suicide completers. *J Psychiatry Neurosci*. 34:281-288.
- 7. Todtenkopf MS, Vincent SL, Benes FM (2005): A cross-study meta-analysis and three-dimensional comparison of cell counting in the anterior cingulate cortex of schizophrenic and bipolar brain. *Schizophr Res.* 73:79-89.
- 8. Torres-Platas SG, Hercher C, Davoli MA, Maussion G, Labonte B, Turecki G, *et al.* (2011): Astrocytic hypertrophy in anterior cingulate white matter of depressed suicides. *Neuropsychopharmacology*. 36:2650-2658.
- 9. Gittins RA, Harrison PJ (2011): A morphometric study of glia and neurons in the anterior cingulate cortex in mood disorder. *J Affect Disord.* 133:328-332.
- 10. Khundakar AA, Morris CM, Oakley AE, Thomas AJ (2011): Cellular pathology within the anterior cingulate cortex of patients with late-life depression: a morphometric study. *Psychiatry Res.* 194:184-189.
- 11. Rajkowska G, Halaris A, Selemon LD (2001): Reductions in neuronal and glial density characterize the dorsolateral prefrontal cortex in bipolar disorder.[comment]. *Biol Psychiatry*. 49:741-752.
- 12. Toro CT, Hallak JE, Dunham JS, Deakin JF (2006): Glial fibrillary acidic protein and glutamine synthetase in subregions of prefrontal cortex in schizophrenia and mood disorder. *Neurosci Lett.* 404:276-281.
- 13. Johnston-Wilson NL, Sims CD, Hofmann JP, Anderson L, Shore AD, Torrey EF, *et al.* (2000): Disease-specific alterations in frontal cortex brain proteins in schizophrenia, bipolar disorder, and major depressive disorder. The Stanley Neuropathology Consortium. *Mol Psychiatry*. 5:142-149.
- 14. Cotter D, Mackay D, Chana G, Beasley C, Landau S, Everall IP (2002): Reduced neuronal size and glial cell density in area 9 of the dorsolateral prefrontal cortex in subjects with major depressive disorder. *Cereb Cortex*. 12:386-394.
- 15. Tkachev D, Mimmack ML, Ryan MM, Wayland M, Freeman T, Jones PB, *et al.* (2003): Oligodendrocyte dysfunction in schizophrenia and bipolar disorder. *Lancet.* 362:798-805.
- 16. Uranova NA, Vostrikov VM, Orlovskaya DD, Rachmanova VI (2004): Oligodendroglial density in the prefrontal cortex in schizophrenia and mood disorders: a study from the Stanley Neuropathology Consortium. *Schizophr Res.* 67:269-275.
- 17. Ernst C, Chen ES, Turecki G (2009): Histone methylation and decreased expression of TrkB.T1 in orbital frontal cortex of suicide completers. *Mol Psychiatry*. 14:830-832.

- 18. Rajkowska G, Miguel-Hidalgo JJ, Wei J, Dilley G, Pittman SD, Meltzer HY, *et al.* (1999): Morphometric evidence for neuronal and glial prefrontal cell pathology in major depression.[comment]. *Biol Psychiatry*. 45:1085-1098.
- 19. Khundakar A, Morris C, Oakley A, McMeekin W, Thomas AJ (2009): Morphometric analysis of neuronal and glial cell pathology in the dorsolateral prefrontal cortex in late-life depression. *Br J Psychiatry*. 195:163-169.
- 20. Davis S, Thomas A, Perry R, Oakley A, Kalaria RN, O'Brien JT (2002): Glial fibrillary acidic protein in late life major depressive disorder: an immunocytochemical study. *J Neurol Neurosurg Psychiatry*. 73:556-560.
- Miguel-Hidalgo JJ, Baucom C, Dilley G, Overholser JC, Meltzer HY, Stockmeier CA, et al. (2000): Glial fibrillary acidic protein immunoreactivity in the prefrontal cortex distinguishes younger from older adults in major depressive disorder. *BiolPsychiatry*. 48:861-873.
- 22. Ernst C, Nagy C, Kim S, Yang JP, Deng X, Hellstrom IC, *et al.* (2011): Dysfunction of astrocyte connexins 30 and 43 in dorsal lateral prefrontal cortex of suicide completers. *Biol Psychiatry*. 70:312-319.
- 23. Miguel-Hidalgo JJ, Wei J, Andrew M, Overholser JC, Jurjus G, Stockmeier CA, *et al.* (2002): Glia pathology in the prefrontal cortex in alcohol dependence with and without depressive symptoms. *Biol Psychiatry*. 52:1121-1133.
- 24. Bowley MP, Drevets WC, Ongur D, Price JL (2002): Low glial numbers in the amygdala in major depressive disorder. *Biol Psychiatry*. 52:404-412.
- 25. Bezchlibnyk YB, Xu L, Wang JF, Young LT (2007): Decreased expression of insulin-like growth factor binding protein 2 in the prefrontal cortex of subjects with bipolar disorder and its regulation by lithium treatment. *Brain Res.* 1147:213-217.
- 26. Hamidi M, Drevets WC, Price JL (2004): Glial reduction in amygdala in major depressive disorder is due to oligodendrocytes. *Biol Psychiatry*. 55:563-569.
- 27. Altshuler LL, Abulseoud OA, Foland-Ross L, Bartzokis G, Chang S, Mintz J, et al. (2010): Amygdala astrocyte reduction in subjects with major depressive disorder but not bipolar disorder. *Bipolar Disord*. 12:541-549.
- 28. Muller MB, Lucassen PJ, Yassouridis A, Hoogendijk WJ, Holsboer F, Swaab DF (2001): Neither major depression nor glucocorticoid treatment affects the cellular integrity of the human hippocampus. *Eur J Neurosci.* 14:1603-1612.
- 29. Boldrini M, Santiago AN, Hen R, Dwork AJ, Rosoklija GB, Tamir H, *et al.* (2013): Hippocampal granule neuron number and dentate gyrus volume in antidepressant-treated and untreated major depression. *Neuropsychopharmacology*.
- 30. Stockmeier CA, Mahajan GJ, Konick LC, Overholser JC, Jurjus GJ, Meltzer HY, et al. (2004): Cellular changes in the postmortem hippocampus in major depression. *Biol Psychiatry*. 56:640-650.
- 31. Cobb JA, Simpson J, Mahajan GJ, Overholser JC, Jurjus GJ, Dieter L, *et al.* (2013): Hippocampal volume and total cell numbers in major depressive disorder. *J Psychiatr Res.* 47:299-306.
- 32. Ordway GA, Szebeni A, Chandley MJ, Stockmeier CA, Xiang L, Newton SS, *et al.* (2012): Low gene expression of bone morphogenetic protein 7 in brainstem astrocytes in major depression. *Int J Neuropsychopharmacol.* 15:855-868.
- 33. Bernard R, Kerman IA, Thompson RC, Jones EG, Bunney WE, Barchas JD, *et al.* (2011): Altered expression of glutamate signaling, growth factor, and glia genes in the locus coeruleus of patients with major depression. *Mol Psychiatry*. 16:634-46.
- 34. Zarate CA, Jr., Payne JL, Quiroz J, Sporn J, Denicoff KK, Luckenbaugh D, *et al.* (2004): An open-label trial of riluzole in patients with treatment-resistant major depression. *Am J Psychiatry*. 161:171-174.

- 35. Sanacora G, Kendell SF, Levin Y, Simen AA, Fenton LR, Coric V, *et al.* (2007): Preliminary evidence of riluzole efficacy in antidepressant-treated patients with residual depressive symptoms. *Biol Psychiatry*. 61:822-825.
- 36. Mathew SJ, Murrough JW, aan het Rot M, Collins KA, Reich DL, Charney DS (2010): Riluzole for relapse prevention following intravenous ketamine in treatment-resistant depression: a pilot randomized, placebo-controlled continuation trial. *Int J Neuropsychopharmacol.* 13:71-82.
- 37. Ibrahim L, Diaz Granados N, Jolkovsky L, Brutsche N, Luckenbaugh DA, Herring WJ, *et al.* (2012): A Randomized, placebocontrolled, crossover pilot trial of the oral selective NR2B antagonist MK-0657 in patients with treatment-resistant major depressive disorder. *J Clin Psychopharmacol.* 32:551-557.
- 38. Zarate CA, Jr., Quiroz JA, Singh JB, Denicoff KD, De Jesus G, Luckenbaugh DA, *et al.* (2005): An open-label trial of the glutamate-modulating agent riluzole in combination with lithium for the treatment of bipolar depression. *Biol Psychiatry*. 57:430-432.
- 39. Brennan BP, Hudson JI, Jensen JE, McCarthy J, Roberts JL, Prescot AP, *et al.* (2010): Rapid enhancement of glutamatergic neurotransmission in bipolar depression following treatment with riluzole. *Neuropsychopharmacology*. 35:834-46.
- 40. Coric V, Taskiran S, Pittenger C, Wasylink S, Mathalon DH, Valentine G, et al. (2005): Riluzole augmentation in treatmentresistant obsessive-compulsive disorder: an open-label trial. *Biol Psychiatry*. 58:424-428.
- 41. Grant P, Lougee L, Hirschtritt M, Swedo SE (2007): An open-label trial of riluzole, a glutamate antagonist, in children with treatment-resistant obsessive-compulsive disorder. *J Child Adolesc Psychopharmacol.* 17:761-767.
- 42. Pittenger C, Kelmendi B, Wasylink S, Bloch MH, Coric V (2008): Riluzole augmentation in treatment-refractory obsessivecompulsive disorder: a series of 13 cases, with long-term follow-up. *J Clin Psychopharmacol.* 28:363-367.
- 43. Mathew SJ, Amiel JM, Coplan JD, Fitterling HA, Sackeim HA, Gorman JM (2005): Open-label trial of riluzole in generalized anxiety disorder. *Am J Psychiatry*. 162:2379-2381.