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Asymptotic Convergence of Driven Metadynamics

Suppose that we iterate the Driven Metadynamics protocol (as described in the main text) until the

adaptive term of the biasing potential converges toUa(x, t → ∞)≈Us
a(x)+u(t). Assuming ˙u(t) is

small, the system at this point can be considered as a nonequilibrium driven system governed by

the HamiltonianH(r ,p)+Us
a(x)+Ud(x, t). Assuming there is a unique convergedUs

a(x) (as will

be verified), we can construct a driven ensemble using the iterations performed after the conver-

gence. Having multiple independent runs, one may also use all the nearly converged trajectories to

construct this ensemble. One can use the nonequilibrium work relation (3) to reconstruct the free

energy of the biased system,Fs(x) = F(x)+Us
a(x) (up to an additive constant):

e−βFs(x) ∝
〈
δ (x−xt)e−β∆wt〉

da, (S1)

If we replace the kernel with theδ function in relation (4), we have

〈
U̇a(x, t)

〉
da =

〈
ω(x, t)δ (x−xt)e−β∆wt〉

da. (S2)

Once a convergence is reached we haveω(x, t)≈ ωs(x) and

〈
U̇a(x, t)

〉
da = ω

s(x)
〈
δ (x−xt)e−β∆wt〉

da. (S3)

Using the nonequilibrium work relation (S1), we can conclude that:

〈
U̇a(x, t)

〉
da ∝ ω

s(x)e−βFs(x). (S4)

If ωs(x) ∝ exp(−β ′Us
a(x)) (well-tempered rate) this relation impliesUs

a(x) =−(1+ β ′

β
)−1F(x) and

if ωs(x) does not depend onx (β ′→ 0 limit), this relation impliesUs
a(x) = −F(x). Relation (S4)

and its implications are reminiscent of non-driven metadynamics1 and show that the adaptive term

of the potential averaged over a D-MetaD ensemble converges to the same expression as that of its
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non-driven counterpart. It also shows that the assumption we made above regarding the uniqueness

of Us
a(x) is valid.

It has been shown2 that nonequilibrium work relations are valid not only for Markovian (i.e.,

memory-less) processes but also for history-dependent ones2 as long as there exists a unique sta-

tionary state for eachX(τ) (0≤ τ ≤ T) whenX(τ) is not varied by timet (i.e., ergodicity assump-

tion). If we perform a large number of independent driven metadynamics simulations, we can

argue
〈
Ua(x, t)

〉
da is equal to

〈
Ua(x, t)

〉
τ

in which
〈
.
〉

τ
denotes an average over the steady state

ensemble associated withX(τ). Interestingly, if the targetX(τ) is fixed (i.e., independent oft),

D-MetaD becomes a non-driven metadynamics with a constraintUd(x,τ) = k
2(x−X(τ))2 and a

history-dependent biasUa(x, t) in which
〈
U̇a(x, t)

〉
τ

is

〈
ω(xt , t)K(xt −x)e−β∆wt〉

τ
=

〈
ω(xt , t)K(xt −x)eβUd(xt ,τ)〉

τ
. (S5)

In the steady state,p(x, t) is proportional to exp(−β (F(x)+Us
a(x)+Ud(x,τ))) thus assuming the

kernel approximates aδ function,
〈
U̇a(x, t)

〉
τ

converges toωs(x)exp(−β (F(x)+Us
a(x))) in which

Us
a(x) is independent ofX(τ).

Note that although
〈
.
〉

da denotes an ensemble average, if we only have one iterative simulation,

Ua(x, t) averaged over these iterations can be considered equivalent to
〈
Ua(x, t)

〉
da above whent →

∞, assuming ergodicity. However, the sampling can be improved in a “multiple-walker” scheme in

which several systems share the same adaptive potential which can be approximated as:

Ua(x, t) =
∫ t

0
dt′ω(x, t ′)

〈
δ (x−xt ′)e−β∆wt′〉

da, (S6)

if we replace theδ function with the kernel function. Using the nonequilibrium work relation (S1),

one can connect this ensemble to a non-driven one:

Ua(x, t) =
∫ t

0
dt′ω(x, t ′)

〈
δ (x−xt ′)

〉
a. (S7)
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This is the multiple-walker extension of metadynamics.3 Therefore,Ua(x, t) in a multiple-walker

driven adaptive-bias system is equivalent to that of a multiple-walker non-driven adaptive-bias

system, given sufficient number of walkers. Note that the two systems may behave very differently

initially, but they will converge to the same adaptive potential term.
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(a)t = 2 µs
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(b)t = 4 µs

Figure S1: Converged free energy profileF(Ω) (offset byF(0)) obtained from SMD (red), MetaD
(blue), and D-MetaD (black) simulations of(a) monomeric,(b) dimeric, (c) trimeric, and(d)
tetrameric polyproline peptides.
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(a)t = 40 ns
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(b)t = 80 ns

Figure S2: Free energy profileF(Ω) (offset byF(0)) obtained fromt = 40×nns (i.e., equivalent
of 200 bidirectional iterations) of SMD (red), MetaD (blue), and D-MetaD (black) simulations
on an-meric peptide with(a) n = 1, (b) n = 2, (c) n = 3, and(d) n = 4. The dashed curves are
the D-MetaD results without the work-based corrections (i.e., FU(Ω)) and the green curves are
the average of the three converged curves in Fig. S1 (i.e., Fc(Ω)). The superior efficiency of the
D-MetaD method becomes evident in longer peptides due to its scalability.
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