Immune gene	Function	Knockout Phenotype
IL-12 IFN-γ	Soluble cytokine comprised of heterodimer (p35, p40), secreted by dendritic cells, macrophages, and neutrophils, and drives production of IFN-γ. Soluble cytokine	Acute susceptibility and failure to control parasite replication due to reduced production of IFN- $\gamma^{1,2}$.
	produced by NK and T cells, mediates activation of cells by induction of anti-microbial gene expression, major mechanism of resistance to intracellular bacterial and protozoan pathogens.	failure to control parasite replication ^{3, 4} .
ΤΝΕ-α	Soluble cytokine secreted by leukocytes, stimulated by LPS and IFN-γ, mediates second signal for activation of macrophages,, promotes innate NK cell responses.	Required for control of chronic toxoplasmic encephalitis in normal ⁵⁻⁷ and SCID mice ⁵ .
iNOS	Inducible nitric oxide synthase, upregulated in response to endotoxin and IFN- γ , produces diffusible nitric oxide, potent antimcrobial effector.	Acute resistance is normal but animals are susceptible to chronic toxoplasmic encephalitis ⁸ .
IGTP (IrgM3) LRG-47 (IrgM1) IIGP (Irga6)	Interferon regulated GTPases, family of GTPases strongly induced by IFN-γ and involved in pathogen resistance.	Acute susceptibility is associated with reduced anti- microbial activity ^{9, 10} .
STAT1	Signal transducers and activator of transcription 1, phosphorylated by JAK kinases downstream of IFN-γ receptors, dimerizes, translocates to nucleus and activates gene transcription.	Acute susceptibility is associated with reduced anti- microbial activity ¹¹ ¹¹ .
STAT4	Transcription factor, phosphorylated by JAK kinases downstream of IL-12 receptors, dimerizes, translocates to nucleus and activates	Acute susceptibility is associated with a failure to produce IFN- γ^{12} .

Table S1 Major mediators of resistance to *T. gondii* as defined by genetic knockouts in the mouse.

	gene transcription.	
SOCS3	Suppressor of cytokine signaling 3, downregulates JAK- STAT signaling.	Acute susceptibility and failure to control parasite replication are reversed by blocking IL-6 or providing IL- 12 ¹³ .
RelB	Subunit of nuclear factor kappa-B (NFkB), downstream of MyD88, drives expression of many cytokines.	Failure to produce IFN- γ leads to susceptibility to acute infection ¹⁴ .
MyD88	Common adapter for TLRs and IL-1R, signals in response to pathogen associated molecular patterns, and inflammation driven by the IL-1 family.	Required for acute resistance to <i>T. gondii</i> through production of IL-12 and also has a role in T cells ^{15 16} .
UNC93B1	Resident ER protein, associated with regulation of TLR signaling.	Required for control of acute infection associated with a cell autonomous role in killing and the production of IL-12 ^{17, 18}
GBP ^{chr3}	A cluster encoding five separate guanylate binding proteins of the p65 family located on chromosome 3 in the mouse. GBP1, 2,3,5, and 7, along with a pseudogene of GBP2 are contained within this locus that was disrupted using flanking LoxP sites	Increased susceptibility to challenge with type II ME49 strain. Decreased ability to control intracellular replication in IFN-γ activated macrophages ¹⁹ .

1. Khan, I.A., Matsuura, T. & Kasper, L.H. Interleukin-12 enhances murine survival against acute toxoplasmosis. Infect Immun 62, 1639-42 (1994).

 Yap, G., Pesin, M. & Sher, A. Cutting edge: Il-12 is required for the maintenance of ifn-γ production in t cells mediating chronic resistance to the intracellular pathogen, toxoplasma gondii. J Immunol 165, 628-31 (2000).

3. Suzuki, Y., Orellana, M.A., Schreiber, R.D. & Remington, J.S. Interferon-γ: The major mediator of resistance against toxoplasma gondii. Science 240, 516-18 (1988).

4. Yap, G.S. & Sher, A. Effector cells of both nonhemopoietic and hemopoietic origin are required for interferon (ifn)-gamma- and tumor necrosis factor (tnf)-alphadependent host resistance to the intracellular pathogen, toxoplasma gondii. J. Exp. Med. 189, 1083-91 (1999).

5. Hunter, C.A., Abrams, J.S., Beaman, M.H. & Remington, J.S. Cytokine mrna in the central nervous system of scid mice infected with toxoplasma gondii: Importance of t-cell independent regulation of resistance to t. Gondii. Infection and Immunity 61, 4038-44 (1993).

6. Yap, G.S., Scharton-Kersten, T., Charest, H. & Sher, A. Decreased resistance of tnf receptor p55- and p75-deficient mice to chronic toxoplasmosis despite normal activation of inducible nitric oxide synthase in vivo. Journal of Immunology 160, 1340-45 (1998).

- Deckert-Schlüter, M., Bluethmann, H., Rang, A., Hof, H. & Schluter, D. Crucial role of tnf receptor type 1 (p55), but not of tnf receptor type 2 (p75), in murine toxoplasmosis. Journal of Immmunology 160, 3427-36 (1998).
- Scharton-Kersten, T.M., Yap, G., Magram, J. & Sher, A. Inducible nitric oxide is essential for host control of persistent but not acute infection with the intracellular pathogen toxoplasma gondii. Journal of Experimental Medicine 185, 1261-73 (1997).
- Collazo, C.M. et al. Inactivation of Irg-47 and irg-47 reveals a family of interferon γ-inducible genes with essential, pathogen-specific roles in resistance to infection. J Exp Med 194, 181-8. (2001).
- 10. Taylor, G.A., Feng, C.G. & Sher, A. Control of ifn-gamma-mediated host resistance to intracellular pathogens by immunity-related gtpases (p47 gtpases). Microb. Infect. 9, 1644-51 (2007).
- 11. Gavrilescu, L.C., Butcher, B.A., Del Rio, L., Taylor, G.A. & Denkers, E.Y. Stat1 is essential for antimicrobial effector function but dispensable for gamma interferon production during toxoplasma gondii infection. Infect Immun. 72, 1257-64 (2004).
- 12. Cai, G., Radzanowski, T., Villegas, E.N., Kastelein, R. & Hunter, C.A. Identification of stat4-dependent and independent mechanisms of resistance to toxoplasma gondii1. Journal of Immunology 165, 2619-27 (2000).
- 13. Whitmarsh, R.J. et al. A critical role for socs3 in innate resistance to toxoplasma gondii. Cell Host Microbe 10, 224-36 (2011).
- 14. Caamaño, J., Alexander, J., Craig, L., Bravo, R. & Hunter, C.A. The nf-kb family member relb is required for innate and adaptive immunity to toxoplasma gondii1. J Immunol 163, 4453-61 (1999).
- 15. Scanga, C.A. et al. Cutting edge: Myd88 is required for resistance to toxoplasma gondii infection and regulates parasite-induced il-12 production by dendritic cells. J. Immunol. 168, 5997-6001 (2002).
- 16. LaRosa, D.F. et al. T cell expression of myd88 is required for resistance to toxoplasma gondii. Proc Natl Acad Sci U S A 105, 3855-60 (2008).
- 17. Melo, M.B. et al. Unc93b1 mediates host resistance to infection with toxoplasma gondii. PLoS Pathog 6, e1001071 (2010).
- 18. Pifer, R., Benson, A., Sturge, C.R. & Yarovinsky, F. Unc93b1 is essential for tlr11 activation and il-12-dependent host resistance to toxoplasma gondii. J Biol Chem 286, 3307-14 (2011).
- 19. Yamamoto, M. et al. A cluster of interferon-gamma-inducible p65 gtpases plays a critical role in host defense against toxoplasma gondii. Immunity 37 (2012).

	ost pathways altered by <i>T. gondii</i> infection
Target	Findings
Apoptosis	Infection of human foreskin fibroblasts (HFF) with type I RH strain parasites
	blocks multiple pathways of activating apoptosis ²⁰ .
	Infection of human HL-60 or U937 cells with the type II strain NTE blocks
	apoptosis induced by actinomycin D, TNF- α , and cyclohexamide ²¹ .
	Infection of NIH 3T3 cells with type I RH strain parasites blocks caspase
	activation and inhibits apoptosis ²² .
Cell cycle	Infection of HFF cells with the type I RH strain parasites stimulates G1/S
	transition followed by G2/M arrest, associated with sustained ERK
	activation ²³ .
	Infection of human trophoblast (BeWo) and normal human dermal fibroblasts
	(NHDF) with the type I RH strain parasites results in G2 arrest via cyclin B1
	down regulation ²⁴ .
DC maturation	Type II PRU strain parasites preferentially infect immature murine bone-marrow
and trafficking	derived DCs and blocks maturation induced by TLR ligands or CD40L ²⁵ .
	Infection of human monocyte-derived or murine bone marrow-derived DCs with
	type I RH strain parasites enhances motility and barrier migration in vitro, and
	in vivo dissemination in the mouse with DCs pulsed with the type II strain
	parasite PTG ²⁶
	DC are activated and expand in response to type II strains but this is reduced in
	Type I strains ²⁷ .
Host gene	Infection a clone of the type II strain ME49 induces transcription of many genes
transcription	in HFF cells, including immune response pathways, glycolysis, and lipid
	metabolism ²⁸ ; similar responses were seen in HFF cells infected with the
	type I RH strain ²⁹ .
	Infection with type I RH strain induces Hif1a in HFF cells and this response is
	important for parasite growth under hypoxic conditions ³⁰ .
	Induction of host EGR2 transcriptional response is due to rhoptry discharge
	following infection of HFF cells by the type I RH strain ³¹ .
	Differential expression of host cell transcriptional responses during infection of
	HFF cells by type II and III strain parasites drives development of immune
	responses including STATs and IL-12 ³² .
P38, JNK,	Infection of human THP-1 monocyte cell line with type I strain RH induces
ERK1/2	phosphorylation of ERK1/2, P38, and JNKs ³³ .
	Transient activation of MAPK pathways in murine bone marrow derived
	macrophages cells infected with the type I RH strain is followed by
	suppression of LPS triggered responses ³⁴ .
	Soluble tachyzoite antigen from type I RH strain activates MAPK through TRAF6
	that are required for IL-12 production ³⁵ .
NFkB	Proinflammatory cytokines triggered by LPS are blocked by inhibition of nuclear
	translocation of NF κ B in response to infection with type I RH strain ³⁶ .
	The ability of LPS to induce NF kB activation is blocked by infection of bone
	marrow derived murine macrophages infected with type I RH strain ³⁷ .
IL-12	IL-12 production is strongly induced by type II, but not type I or III strains in
	murine bone marrow derived and peritoneal macrophages ³⁸ .
	Infection of bone marrow derived murine macrophages with type II strain ME49
	induces higher levels of IL-12 than infection with type I RH strain ³⁹ .
IFN-γ	Induction of gene expression by treatment of HFF cells with IFN- γ is blocked by
	infection with each of three strain types (I,II, III) 40 .
	Induction of MHC I and MHC II by treatment of murine bone marrow derived
	macrophages cells with IFN- γ is blocked by infection with type II NTE strain
	Infection of murine bone marrow derived macrophages or RAW264
	macrophages with the type II NTE strain down regulated induction of

Table S2 Host pathways altered by *T. gondii* infection

STAT1	inducible nitric oxide by treatment with IFN-γ ⁴² . Infection of RAW264 macrophages with type I RH and type II ME49 strain parasites inhibited upregulation of MHC II by IFN-γ, but only type I RH strain parasites were able to block induction of nitric oxide production ⁴³ Infection of bone marrow derived macrophages with type II NTE strain blocked
on an	IFN-γ induced transcriptional changes by altering chromatin and disrupting STAT1 binding to nuclear promoters ⁴⁴ .
SOCS-1	 Induction of SOCS-1 expression contributes to blocking of IFN-γ signaling through STAT1 in murine BMM and RAW264 macrophages infected with type I BK strain parasites ⁴⁵. SOCS1 expression in RAW264 macrophages cells is upregulated during infection with type I strain but not type II ME49 strain parasites; this pathway independent of TLR signaling but is regulated by EGR2 and p38 Map kinase ⁴³.
SOCS-3	Infection with type I and II strains induces SOCS3 that limits IL-6 signaling and protects from immune pathology ¹³ .
TNF-α	Infection with type I RH strain suppresses TNF- α mediated transcription in murine BMM and this occurs through chromatin modification ⁴⁶ .
STAT3	Infection with live type I RH strain, but not treatment with lysates, induces STAT3 activation in murine bone marrow derived macrophages and suppresses IL-12 and TNF- α^{47} .

1. Nash, P.B. et al. Toxoplasma gondii-infected cells are resistant to multiple inducers of apoptosis. Journal of Immunology 160, 1824-30 (1998).

2. Goebel, S., Gross, U. & Lüder, C.G.K. Inhibition of host cell apoptosis by toxoplasma gondii is accompanied by reduced activation of the caspase cascade and alterations of the poly(adp-ribose) polymerase expression. J. Cell Sci. 114, 3495-505 (2001).

3. Payne, T.M., Molestina, R.E. & Sinai, A.P. Inhibition of caspase activation and a requirement for nf-kb function in the toxoplasma gondii-mediated blockade of host apoptosis. J. Cell Science 116, 4345-58 (2003).

4. Molestina, R.E., El-Guendy, N. & Sinai, A.P. Infection with toxoplasma gondii results in dysregulation of the host cell cycle. Cell Microbiol 10, 1153-65 (2008).

Brunet, J. et al. Toxoplasma gondii exploits uhrf1 and induces host cell cycle arrest at g2 to enable its proliferation. Cell Microbiol 10, 908-20 (2008).
 McKee, A.S., Dzierszinski, F., Boes, M., Roos, D.S. & Pearce, E.J. Functional inactivation of immature dendritic cells by the intracellular parasite toxoplasma gondii. J

 McKee, A.S., Dzierszinski, F., Boes, M., Roos, D.S. & Pearce, E.J. Functional inactivation of immature dendritic cells by the intracellular parasite toxoplasma gondii. J Immunology 173, 2632-40. (2004).

7. Lambert, H., Hitziger, N., Dellacasa, I., Svensson, M. & Barragan, A. Induction of dendritic cell migration upon toxoplasma gondii infection potentiates parasite dissemination. Cell Micro. 8, 1611-23 (2006).

8. Tait, E.D. et al. Virulence of toxoplasma gondii is associated with distinct dendritic cell responses and reduced numbers of activated cd8+ t cells. J Immunol 185, 1502-12 (2010).

9. Blader, I., Manger, I.D. & Boothroyd, J.C. Microarray analysis reveals previously unknown changes in toxoplasma gondii infected human cells. J. Biol. Chem. 276, 24223-31 (2001).

10. Gail, M., Gross, U. & Bohne, W. Transcriptional profile of toxoplasma gondii infected human fibroblasts as revealed by gene-array hybridization. Mol Genet Genomics 265, 905-12 (2001).

11. Spear, W. et al. The host cell transcription factor hypoxia-inducible factor 1 is required for toxoplasma gondii growth and survival at physiological oxygen levels. Cell Microbiol 8, 339-52 (2006).

12. Phelps, E.D., Sweeney, K.R. & Blader, I.J. Toxoplasma gondii rhoptry discharge correlates with activation of the early growth response 2 host cell transcription factor. Infect Immun 76, 4703-12 (2008).

13. Saeij, J.P.J. et al. Toxoplasma co-opts host gene expression by injection of a polymorphic kinase homologue. Nature 445, 324-27 (2007).

14. Valere, A. et al. Activation of the cellular mitogen-activated protein kinase pathways erk, p38 and jnk during toxoplasma gondii invasion. Parasite 10, 59-64 (2003).

15. Kim, L., Butcher, B.A. & Denkers, E.Y. Toxoplasma gondii interferes with lipopolysaccharide-induced mitogen-activated protein kinase activation by mechanisms distinct from endotoxin tolerance. J Immunol 172, 3003-10 (2004).

16. Mason, N.J. et al. Traf6-dependent mitogen-activated protein kinase activation differentially regulates the production of interleukin-12 by macrophages in response to toxoplasma gondii. Infection and Immunity 72, 5662-67 (2004).

17. Butcher, B.A., Kim, L., Johnson, P.F. & Denkers, E.Y. Toxoplasma gondii tachyzoites inhibit proinflammatory cytokine induction in infected macrophages by preventing nuclear translocation of the transcription factor nf-kappa b. Journal of Immunology 167, 2193-201 (2001).

18. Shapira, S., Speirs, K., Gerstein, A., Caamano, J. & Hunter, C.A. Suppression of nf-kappa b activation by infection with toxoplasma gondii. Journal of Infectious Diseases 185, S66-S72 (2002).

19. Robben, P.M. et al. Production of il-12 by macrophages infected with toxoplasma gondii depends on the parasite genotype. J. Immunol. 172, 3686-94 (2004).

20. Kim, L. et al. Toxoplasma gondii genotype determines myd88-dependent signaling in infected macrophages. J. Immunol. 177, 2584-91 (2006).

21. Kim, S.K., Fouts, A.E. & Boothroyd, J.C. Toxoplasma gondii dysregulates

ifn-γ inducible gene expression in human fiboblasts: Insights from a genome-wide transcriptional profiling. J. Immunol. 178, 5154-65 (2007).

22. Lüder, C.G.K., Lang, T., Beuerle, B. & Gross, U. Down-regulation of mhc class ii molecules and inability to up-regulate class i molecules in murine macrophages after infection with toxoplasma gondii. Clinical and Experimental Immunology 112, 308-16 (1998).

 Luder, C.G., Algner, M., Lang, C., Bleicher, N. & Gross, U. Reduced expression of the inducible nitric oxide synthase after infection with toxoplasma gondii facilitates parasite replication in activated murine macrophages. Int J Parasitol 33, 833-44 (2003).

24. Stutz, A., Kessler, H., Kaschel, M.E., Meissner, M. & Dalpke, A.H. Cell invasion and strain dependent induction of suppressor of cytokine signaling-1 by toxoplasma gondii. Immunobiology 217, 28-36 (2012).

25. Lang, C. et al. Impaired chromatin remodelling at stat1-regulated promoters leads to global unresponsiveness of toxoplasma gondii-infected macrophages to ifn-gamma. PLoS Pathog 8, e1002483 (2012).

26. Zimmermann, S., Murray, P.J., Heeg, K. & Dalpke, A.H. Induction of suppressor of cytokine signaling-1 by toxoplasma gondii contributes to immune evasion in macrophages by blocking ifn-gamma signaling. Journal of Immunology 176, 1840-47 (2006).

27. Whitmarsh, R.J. et al. A critical role for socs3 in innate resistance to toxoplasma gondii. Cell Host Microbe 10, 224-36 (2011).

 Leng, J., Butcher, B.A., Egan, C.E., Abdallah, D.S. & Denkers, E.Y. Toxoplasma gondii prevents chromatin remodeling initiated by tlr-triggered macrophage activation. J Immunol 182, 489-97 (2009).

29. Butcher, B.A. et al. Cutting edge: Il-10-independent stat3 activation by toxoplasma gondii mediates suppression of il-12 and tnf-alpha in host macrophages. Journal of Immunology 174, 3148-52 (2005).