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Table S1 Major mediators of resistance to T. gondii as defined by genetic 
knockouts in the mouse. 

  
Immune gene Function Knockout Phenotype 
IL-12  Soluble cytokine 

comprised of heterodimer 
(p35, p40), secreted by 
dendritic cells, 
macrophages, and 
neutrophils, and drives 
production of IFN-γ. 

Acute susceptibility and 
failure to control parasite 
replication due to reduced 
production of IFN-γ 1, 2. 

IFN-γ Soluble cytokine 
produced by NK and T 
cells, mediates activation 
of cells by induction of 
anti-microbial gene 
expression, major 
mechanism of resistance 
to intracellular bacterial 
and protozoan 
pathogens. 

Acute susceptibility and 
failure to control parasite 
replication 3, 4. 

TNF-α Soluble cytokine secreted 
by leukocytes, stimulated 
by LPS and IFN-γ, 
mediates second signal 
for activation of 
macrophages,, promotes 
innate NK cell responses. 

Required for control of 
chronic toxoplasmic 
encephalitis in normal 5-7 and 
SCID mice 5. 

iNOS Inducible nitric oxide 
synthase, upregulated in 
response to endotoxin 
and IFN-γ, produces 
diffusible nitric oxide, 
potent antimcrobial 
effector. 

Acute resistance is normal 
but animals are susceptible to 
chronic toxoplasmic 
encephalitis 8. 

IGTP (IrgM3) 
LRG-47 (IrgM1) 
IIGP (Irga6) 

Interferon regulated 
GTPases, family of 
GTPases strongly 
induced by IFN-γ and 
involved in pathogen 
resistance. 

Acute susceptibility is 
associated with reduced anti-
microbial activity 9, 10. 

STAT1  Signal transducers and 
activator of transcription 
1, phosphorylated by JAK 
kinases downstream of 
IFN-γ receptors, 
dimerizes, translocates to 
nucleus and activates 
gene transcription. 

Acute susceptibility is 
associated with reduced anti-
microbial activity 11 11. 

STAT4 Transcription factor, 
phosphorylated by JAK 
kinases downstream of 
IL-12 receptors, 
dimerizes, translocates to 
nucleus and activates 

Acute susceptibility is 
associated with a failure to 
produce IFN-γ 12. 
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gene transcription. 
SOCS3 Suppressor of cytokine 

signaling 3, 
downregulates JAK-
STAT signaling. 

Acute susceptibility and 
failure to control parasite 
replication are reversed by 
blocking IL-6 or providing IL-
12 13. 

RelB Subunit of nuclear factor 
kappa-B (NFkB), 
downstream of MyD88, 
drives expression of 
many cytokines. 

Failure to produce IFN-γ 
leads to susceptibility to 
acute infection 14. 

MyD88  Common adapter for 
TLRs and IL-1R, signals 
in response to pathogen 
associated molecular 
patterns, and 
inflammation driven by 
the IL-1 family. 

Required for acute resistance 
to T. gondii through 
production of IL-12 and also 
has a role in T cells 15 16. 

UNC93B1 Resident ER protein, 
associated with 
regulation of TLR 
signaling. 

Required for control of acute 
infection associated with a 
cell autonomous role in killing 
and the production of IL-12 17, 

18. 
GBP chr3 A cluster encoding five 

separate guanylate 
binding proteins of the 
p65 family located on 
chromosome 3 in the 
mouse.  GBP1, 2,3,5, 
and 7, along with a 
pseudogene of GBP2 are 
contained within this 
locus that was disrupted 
using flanking LoxP sites 

Increased susceptibility to 
challenge with type II ME49 
strain.  Decreased ability to 
control intracellular replication 
in IFN-γ activated 
macrophages 19. 
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Table S2  Host pathways altered by T. gondii infection 
Target Findings 
Apoptosis Infection of human foreskin fibroblasts (HFF) with type I RH strain parasites 

blocks multiple pathways of activating apoptosis 20.  
Infection of human HL-60 or U937 cells with the type II strain NTE blocks 

apoptosis induced by actinomycin D, TNF-α, and cyclohexamide 21. 
Infection of NIH 3T3 cells with type I RH strain parasites blocks caspase 

activation and inhibits apoptosis 22. 
Cell cycle Infection of HFF cells with the type I RH strain parasites stimulates G1/S 

transition followed by G2/M arrest, associated with sustained ERK 
activation23.  

Infection of human trophoblast (BeWo) and normal human dermal fibroblasts 
(NHDF) with the type I RH strain parasites results in G2 arrest via cyclin B1 
down regulation 24. 

DC maturation 
and trafficking 

Type II PRU strain parasites preferentially infect immature murine bone-marrow 
derived DCs and blocks maturation induced by TLR ligands or CD40L 25.   

Infection of human monocyte-derived or murine bone marrow-derived DCs with 
type I RH strain parasites enhances motility and barrier migration in vitro, and 
in vivo dissemination in the mouse with DCs pulsed with the type II strain 
parasite PTG 26.   

DC are activated and expand in response to type II strains but this is reduced in 
Type I strains 27. 

Host gene 
transcription 

Infection a clone of the type II strain ME49 induces transcription of many genes 
in HFF cells, including immune response pathways, glycolysis, and lipid 
metabolism 28; similar responses were seen in HFF cells infected with the 
type I RH strain 29. 

Infection with type I RH strain induces Hif1a in HFF cells and this response is 
important for parasite growth under hypoxic conditions 30. 

Induction of host EGR2 transcriptional response is due to rhoptry discharge 
following infection of HFF cells by the type I RH strain 31. 

Differential expression of host cell transcriptional responses during infection of 
HFF cells by type II and III strain parasites drives development of immune 
responses including STATs and IL-12 32. 

P38, JNK, 
ERK1/2 

Infection of human THP-1 monocyte cell line with type I strain RH induces 
phosphorylation of ERK1/2, P38, and JNKs 33.   

Transient activation of MAPK pathways in murine bone marrow derived 
macrophages cells infected with the type I RH strain is followed by 
suppression of LPS triggered responses 34. 

Soluble tachyzoite antigen from type I RH strain activates MAPK through TRAF6 
that are required for IL-12 production 35. 

NFkB Proinflammatory cytokines triggered by LPS are blocked by inhibition of nuclear 
translocation of NFκB in response to infection with type I RH strain 36. 

The ability of LPS to induce NFκB activation is blocked by infection of bone 
marrow derived murine macrophages infected with type I RH strain 37. 

IL-12 IL-12 production is strongly induced by type II, but not type I or III strains in 
murine bone marrow derived and peritoneal macrophages 38. 

Infection of bone marrow derived murine macrophages with type II strain ME49 
induces higher levels of IL-12 than infection with type I RH strain 39. 

IFN-γ Induction of gene expression by treatment of HFF cells with IFN-γ is blocked by 
infection with each of three strain types (I,II, III) 40. 

Induction of MHC I and MHC II by treatment of murine bone marrow derived 
macrophages cells with IFN-γ is blocked by infection with type II NTE strain 
41. 

Infection of murine bone marrow derived macrophages or RAW264 
macrophages with the type II NTE strain down regulated induction of 
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inducible nitric oxide by treatment with IFN-γ  42.  
Infection of RAW264 macrophages with type I RH and type II ME49 strain 

parasites inhibited upregulation of MHC II by IFN-γ, but only type I RH strain 
parasites were able to block induction of nitric oxide production 43  

STAT1 Infection of bone marrow derived macrophages with type II NTE strain blocked 
IFN-γ induced transcriptional changes by altering chromatin and disrupting 
STAT1 binding to nuclear promoters 44. 

SOCS-1 Induction of SOCS-1 expression contributes to blocking of IFN-γ signaling 
through STAT1 in murine BMM and RAW264 macrophages infected with 
type I BK strain parasites 45. 

SOCS1 expression in RAW264 macrophages cells is upregulated during 
infection with type I strain but not type II ME49 strain parasites; this pathway 
independent of TLR signaling but is regulated by EGR2 and p38 Map kinase 
43. 

SOCS-3 Infection with type I and II strains induces SOCS3 that limits IL-6 signaling and 
protects from immune pathology 13. 

TNF-α Infection with type I RH strain suppresses TNF-α mediated transcription in 
murine BMM and this occurs through chromatin modification 46. 

STAT3 
 

Infection with live type I RH strain, but not treatment with lysates, induces 
STAT3 activation in murine bone marrow derived macrophages and suppresses 
IL-12 and TNF-α 47. 
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