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Supplementary Figure 1: Experimental Setup. (a) Schematic representation of adoptive 

cell transfer and infection with Listeria Monocytogenes expressing recombinant ovalbumin 

(Lm-OVA). Congenically-labeled OT-I cells were sorted for CD4.52-/B220-/CD4-/MHCII-

/NK1.1-/Gr-1-/PI- CD8+  to >99% purity. (b) Representative histograms of indicated 

surface-receptor expression during infection. Results are representative of 3 independent 

experiments (n ≥ 3 mice per sample). 
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Supplementary Figure 2: Phenotypic characterization of OT-I donor cells at high and 

low precursor frequencies. (a and b) Representative histograms of surface- receptor 

expression two days prior to the peak and at the peak of infection for OT-I CD8+ T cells 

transferred with 106 (high)(red) or 5x103 (low)(blue) cells injected i.v. Results are 

representative of 2 independent experiments (n = 3). 
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Supplementary Figure 3: qPCR validation of memory-specific gene transcripts. 

Quantitative PCR analysis of mRNA identified in Figure 1d from early-memory (a) and 

late-memory (b) profiles. Results are representative of 3 independent experiments (n ≥ 3 

mice per sample). 
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Supplementary Figure 4 Co-regulated genes predict transcriptional regulation of T cell 

activation. Enrichment of activated CD8+ T cell clusters in the context of “fine modules” of 

co-regulated genes as identified by the ImmGen consortium. (a) Heat map of the overlap 

of ImmGen modules and core activated CD8+ T cell gene clusters, including only modules 

with significant enrichment for at least one cluster.	
  Microarray results are the compilation 

of 2 (48 hour and day 100) or 3 (all other time points) independently generated samples, 

sorted from pooled spleens (n ≥ 3). (b) Relative mRNA expression for predicted 

regulators for OT-I cells sorted based on expression of KLRG1 on day 7 of Listeria 

infection as measured by qPCR, normalized to Gapdh. Results are representative of 3 

independent experiments (n ≥ 3 mice per sample). 
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Supplementary Figure 5: Expression of genes specific for memory precursors and 

effector cells during the course of infection. Hierarchical clustering of expression of genes 

from published IL-7hi and IL-7Rlo CD8+ effector cells over the course of Lm- OVA 

infection. (a) Terminally-differentiated effector cells, >2-fold, CV<0.5. differentially 

expressed between IL-7Rhi and IL-7Rlo CD8+ effector cells. (b) Memory- precursor cells 

>2-fold, CV<0.5, where three patterns emerged: genes down- regulated with activation 

that returned to naive levels (cluster VII), genes down- regulated with activation that were 

only partially re-expressed (cluster IV), and genes transiently elevated in the first few days 

after activation. (c and d) Percentage of terminal-effector (c) or memory-precursor 

associated genes contained within each of the labeled clusters (I-X). Data is compiled 

from 3 independent experiments (n ≥ 3 mice per sample). 
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Supplementary Figure 6: Experimental setup for evaluating the endogenous 

endogenous CD8+ T cell response. (a) Experimental design and sort purity based on H-

2Kb-OVAp tetramer staining. (b) Representative histograms of surface receptor 

expression at day 8 and day 45 of Lm-OVA infection. Results represent  2 independent 

experiments (n ≥ 3 mice per sample). 
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Supplementary Figure 7: Enrichment of IL-12- and Type I Interferon-responsive gene 

expression. (a and d) Mean class expression of Listeria versus VSV infection, (b and e) 

Volcano plots for Listeria versus VSV infection of both effector and memory OT-I T cells. 

(c and f) Fold-change of pooled effector cells versus pooled memory cells in Lm-OVA (x-

axis) versus fold-change of pooled effector cells versus pooled memory cells in VSV-

OVA. IL-12-responsive genes are highlighted in green (a, b, c) and Type I Interferon-

responsive genes are highlighted in red (d, e, f). Cytokine-responsive gene lists were 

curated from ref. 31. Data is compiled from 3 independent experiments (n ≥ 3 mice per 

sample). 
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Supplementary Table 1: Gene expression values for gene lists defined by clusters I-X. 

Gene names and normalized expression values, parsed by activated T cell clusters as in 

Figure 1 by K-means clustering, filtered on probes with a mean fold-change of >1.4 

anywhere in the dataset and a CV < 0.5. Table is too large to be displayed with the 

supplementary material and can be downloaded as an excel spreadsheet. 
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Supplementary	
  Table	
  2.	
  Best	
  et	
  al.

GO Process # Freq Genes
Cytokine Acitivity 9 32 Xcl1, Ifng, Lif, Ccl4, Il3, Ccl3, Il2, Il21
Receptor Activity 5 18 Nr4a1, Il2ra, Nr4a3, Tnfrsf9, Sema7a
Peptidase Activity 3 11 Serpine2, Gzmc, Gzmb

Mitochondria 95 21

Hspe1, Fastkd2, Txn1, Hspd1, Slc25a5, Timm17a, Cox7b, Uqcrb, Timm23, Timm8a1, Cd24a, Atp5d, Ndufa12, Mrpl54, Mrpl42, 
Mars, Shmt2, Vdac1, Poldip2, Phb, Mrpl45, Shmt1, C1qbp, Nme1, Atp5g1, Mthfd1, Nrp, Idi1, Mrpl36, Mrps27, Vdac2, Apex1, 
Myc, Cyc1, Adsl, Slc25a17, Yars2, Tfrc, Prdx1, Mrps6, Qtrtd1, Mrpl2, Clpp, Mrps18b, Hspa9, Nars, 1700034H14Rik, Cycs, 
Usmg5, Prdx3, Parl, Pdss1, Mrrf, Mtx2, Mrpl18, Timm10, Mrpl51, Tomm20, Hax1, Fpgs, Atp5g3, Mrpl23, Slmo2, Slc16a1, Mrpl47, 
Ndufaf4, Chchd2, Ak2, Ndufb6, Stoml2, Mrpl50, Lap3, Abcf2, Dscaml1, Cct7, Phb2, Slc25a13, Mrpl35, Mthfd2, Chchd4, Bcat1, 
Ldha, Ndufc2, Tufm, Tomm40, Mrps33, Dnajc19, Ndufab1, Gcsh, Timm8b, Pkm2, Gpx1, Cox7a2, Mrps22, Hccs

Translation 47 10
Iars, Eif4a1, Farsb, Rbm3, Mars, Pa2g4, Rps17, Eif2s1, Mrpl36, Eef1e1, Ube2v2, Yars2, Mrps6, Rfc4, Mrpl2, Tnf, Mrps18b, 
Rpl11, Etf1, Hars, Nars, Mrrf, Mrpl18, Mrpl51, Mrpl23, Eif3m, Eif2s2, Mrpl47, Magoh, Eif2b3, Denr, Eif2b1, Mrpl35, Tufm, Rps17, 
Eif2s2, Rps27l, Eif1ax

Protein Folding 12 2.6 Hspe1, Hspd1, Cct5, Uxt, Cct8, Tcp1, Hspa9, Fkbp2, Ppid, Cct3, Cct6a, Cct7

Proteasome 17 3.5 Psmd1, Uchl5, Psma5, Psmb6, Psmb3, Psmc5, Psmd12, Psmc6, Psmd6, Psmg1, Usp14, Psmd14, Psmb7, Psmb2, Pomp, 
Psmd7, Psma4

Respiration 15 3.3 Txn1, Cox7b, Uqcrb, Ndufa12, Mybbp1a, Cyc1, Txnl1, Cycs, Got1, Fabp5, Ndufb6, Tpi1, Ndufc2, Ndufab1, Cox7a2
Glycolysis 6 1.3 Mif, Pgam1, Pgk1, Tpi1, Ldha, Pkm2

Cell Cycle 87 33

Sgol2, Aspm, Nsl1, Nek2, Mcm6, Nuf2, Cenpf, Fbxo5, Myb, Cdk1, Cdk2, Aurkb, Spag5, Cdc6, Birc5, Brca1, Ncapg2, C79407, 
Gmnn, E2f3, Cdkn3, Dlgap5, F630043A04Rik, Esco2, Cdca2, Dscc1, Chaf1b, Cdc45, Chaf1a, Uhrf1, Ccnf, Sgol1, Ndc80, Rbbp8, 
Kif20a, Cdc25c, Cdca5, Kif20b, Kif11, Cep55, Incenp, Bub1b, Casc5, Nusap1, Tpx2, Ube2c, Spc25, Ncaph, Bub1, E2f1, Dsn1, 
Aurka, Cenpe, Ccna2, Cks1b, Ccne2, Smc2, Clspn, Cdkn2c, Kif2c, Cdc20, Cdca8, Tacc3, Kntc1, Brca2, Dbf4, Mad2l1, Fancd2, 
Cdca3, Foxm1, Ncapd2, Lig1, Fanci, 5730590G19Rik, Prc1, Wee1, Plk1, Ccne1, E2f8, Casp3, Ckap2, H2afx, Spc24, Anln, 
Zwilch, Ccnb2, Ercc6l

Mitosis 53 20

53, Aspm, Nsl1, Nek2, Nuf2, Fbxo5, Cdk1, Cdk2, Aurkb, Spag5, Cdc6, Birc5, Ncapg2, C79407, Cenph, F630043A04Rik, Cdca2, 
Ccnf, Sgol1, Ndc80, Kif20a, Cdc25c, Cdca5, Kif20b, Kif11, Cep55, Incenp, Bub1b, Casc5, Nusap1, Tpx2, Ube2c, Spc25, Ncaph, 
Bub1, Dsn1, Aurka, Cenpe, Ccna2, Smc2, Kif2c, Cdc20, Cdca8, Kntc1, Mad2l1, Cdca3, Ncapd2, Wee1, Plk1, Spc24, Anln, 
Zwilch, Ccnb2, Ercc6l

Chromatin 10 3.8 Cdc6, Top2a, Uhrf1, Nusap1, Whsc1, Ezh2, Kif22, Asf1b, H2afx, Hmgn5

DNA Replication 27 10 Prim2, Mcm6, Dtl, Dna2, Cdk1, Cdc6, Brca1, Tk1, Rrm2, Gmnn, Dscc1, Chaf1b, Mcm4, Cdc45, Chaf1a, Gins1, Mcm10, Ccne2, 
Clspn, Pole, Rfc2, Dbf4, Lig1, Fanci, Rrm1, Ccne1, Pola1

DNA Repair 29 11 Exo1, Bard1, Brip1, Eme1, Brca1, Rad51l1, Gen1, Msh3, Esco2, Polq, Chaf1b, Chaf1a, Uhrf1, Rad51, Rad54b, Clspn, Rad54l, 
Pole, Brca2, Fancd2, Rad51ap1, Lig1, Fanci, 5730590G19Rik, Kif22, Rfwd3, Neil3, H2afx, Fancb

Cytoskeleton 33 13 Dtl, Fbxo5, Tube1, Aurkb, Spag5, Birc5, Dlgap5, F630043A04Rik, Diap3, Chaf1a, Ccnf, Sgol1, Kif11, Cep55, Incenp, Kif18a, 
Nusap1, Tpx2, Stk39, Aurka, Plk4, Cenpe, Kif2c, Cdca8, Tacc3, Kntc1, Alms1, Prc1, Plk1, Ckap2, Poc1a, Kif15, Anln

Microtubules 28 11 Kif14, Nuf2, Cenpf, Fbxo5, Tube1, Spag5, Birc5, Kif18b, F630043A04Rik, Gtse1, Kif20a, Kif20b, Kif11, Incenp, Kif18a, Nusap1, 
Tpx2, Aurka, Cenpe, Stmn1, Kif2c, Tacc3, Prc1, Kif22, Ckap2, Kif15, Kif23, Kif4

I

II

III
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Nuclear Assembly 27 10
Hist3h2a, Hist1h2ai, Hist1h2bm, Hist1h2bg, Hist1h2ai, Gm11277, Hist1h2bk, Gm11277, Gm11276, Gm11276, Hist1h2bb, 
Hist1h1a, Hist1h2bc, Hist1h2ak, Hist1h1b, Gm11276, Hist1h2ai, Hist1h2bh, Hist1h2bf, Hist1h2ba, Hist2h2aa1, Hist2h2ab, 
Hist2h2aa1, Hist2h2ac, Cenpa, Asf1b, H2afx

IV Cell Adhesion 5 6 Sell, Itgae, Pecam1, Amigo2, Cd2ap

Translation 23 17 Rpl29, Rpl29, Rps15, Rpl29, Rpsa, Rpl36, Rpl9, Rpl29, Rpl36, Rpl9, Rpl36, Rpl39, Vars, Rpl36, Rpl11, Rpl10, Rplp1, Rpl11, 
Rps9, Rps5, Rps3, Rpl36

Respiration 4 3 Ptplb, Ndufb5, Ndufa4, ND3

Signaling 21 40 Il18rap, Fasl, Gna15, Plek, Itga1, Entpd1, Anxa1, Pik3ap1, Itga4, Zeb2, Klrg1, Klrk1, Itgam, Itgax, Nrp1, Itgb1, Ccr2, S1pr5, 
Cx3cr1, Ccr5, Cxcr3

Homeostasis 4 7.5 Fasl, Itgb1, Ccr2, Ccr5

Receptor Activity 21 42 Il18r1, Il18rap, Itga1, Itga4, Ptprj, Klrg1, Klrb1c, Klrk1, Klrc3, Klrc2, Klrc1, Klra3, Itgam, Itgax, Nrp1, Itgb1, Ccr2, S1pr5, Cx3cr1, 
Ccr5, Cxcr3

Migration 8 15 Myo1f, Itga4, Zeb2, Nrp1, Itgb1, Ccr2, Cx3cr1, Ccr5
Peptidase Activity 4 7.5 Ctla2a, Gzma, Gzmk, Casp1
Cell Adhesion 8 15 Itga1, Lgals1, Myo1f, Itga4, Itgam, Itgax, Nrp1, Itgb1
Integrin 6 11 Plek, Itga1, Itga4, Itgam, Itgax, Itgb1
Actin Cytoskeleton 4 7.5 Plek, Myo1f, Smpdl3b, Itgb1

Transcription 21 17 Bcl2, Scml4, Foxo3, Tcf7, Nr1d1, Rreb1, Zfp187, Zfp395, Nr1d2, Zhx2, Cbx7, Zbtb20, Adrb2, Dmrta1, Hipk2, Foxp1, Atn1, Arrb1, 
Ikbkb, Maml2, Tsc22d3

Homeostasis 7 6.4 Bcl2, Foxo3, Cd7, Slc12a7, Il7r, Idua, Ikbkb
Actin Cytoskeleton 6 5.5 Ssh2, Evl, Idua, Clec2i, Diap2

Transcription 30 14 Cited2, Cdk17, Tob1, Rara, Ikzf3, Lpin1, Zmiz1, Ep300, Gsk3b, Nlrc3, Runx1, Phf1, Kat2b, Phf21a, Gata3, Nfatc2, Txnip, Pias3, 
S1pr1, Akna, Klf3, Foxj2, Pde8a, Arntl, Klf2, Ptger1, Rbl2, Nfatc3, Bcl9l, Elf4

Chromatin 8 3.7 Cited2, Chd3, Phf1, Phf21a, Tm6sf1, Ptger1, Rbl2, Nfatc3
GTPase Activity 7 3.3 B3gat2, Gng2, Ehd3, Tbc1d10c, S1pr1, Gnai2, Tbc1d8b

Cytoskeleton 23 11 Mical1, Ppp1r9b, Lasp1, Fmnl1, Dock2, Lpin1, Ccdc88c, Lats2, Plec, 2310014H01Rik, Cdc42ep3, Apbb1ip, Wipf1, Tln1, Jak1, 
Ssh1, Zyx, Lsp1, Prkcz, Arhgef18, Sntb2, Tacc1, Flna

Microtubules 10 4.7 Kif21b, Pea15a, Sgk1, Ccdc88c, Gsk3b, Abca2, Cdkn1b, Prkcz, Sntb2, Tacc1

Actin Cytoskeleton 22 10 Smpdl3a, Atp2a3, Ppp1r9b, Lasp1, Fmnl1, Lpin1, Hexb, Dpysl2, Plec, 2310014H01Rik, Man2a1, Wipf1, Prex1, Tln1, Ssh1, Gmfg, 
Smpd1, Lsp1, Prkcz, Arhgef18, Sntb2, Flna

Respiration 4 1.9 Lpin1, Cpt1a, Crot, Acsbg1
Peptidase Activity 6 7.3 Apaf1, Scpep1, Ctla2b, Casp7, Ggh, Pycard
Respiration 1 1.2 Glrx
Transcription 11 12 Pogk, Tbx21, Ern1, Runx2, Zeb2, Zbtb7b, Hopx, Bhlhe40, Rora, Smad3, Fbxl2
Cell Adhesion 6 6.5 St3gal6, Cd44, Klra5, Itgal, Nptn, L1cam
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Supplementary Table 2: Functional analysis of genes according to biological process. 

Genes were grouped based on Gene Ontology tags and by gene cluster. 
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Predicted Activators Predicted Repressors

I
Tbx21 (0.19857), Id2 (0.05328), Relb (0.02433), Rora (0.01946), Klf12 (0.01764), Smyd1 (0.01663), Eomes 
(0.01175), Kcnip3 (0.01049), Zbtb16 (0.00910), Aebp2 (0.00841), Nab1 (0.00773), Stat4 (0.00552), Runx2 
(0.00468), Atf6 (0.00277), Zbtb38 (0.00154), Nr4a2 (0.00145), Insm1 (0.00035)

Pou2af1 (-0.00086), Pax5 (-0.00096), Mycn (-0.00123), Zfp318 (-0.00131), 
Ebf1 (-0.00179), Dach1 (-0.00308), Pparg (-0.00753), Cebpb (-0.02145)

II

Morf4l2 (0.17131), Sap18 (0.14917), Churc1 (0.13057), Phf5a (0.12564), Cbx5 (0.12369), Hdac6 (0.12180), 
Taf9 (0.12015), Prmt7 (0.11922), Ruvbl1 (0.11820), Ruvbl2 (0.11187), Mybl2 (0.10981), Cnbp (0.10960), 
Actl6a (0.10835), E2f1 (0.10774), Ascc1 (0.10701), Trim28 (0.10597), Dpy30 (0.10452), Cops2 (0.10421), 
Elof1 (0.10418), Fubp1 (0.10348), Ecsit (0.10277), Phb2 (0.10064), Pa2g4 (0.09900), E2f6 (0.09220), Phb2 
(0.09201), Aatf (0.09194), Taf1a (0.09113), Nkrf (0.09097), Bag1 (0.09037), Kat2a (0.09036), Eny2 
(0.09029), Npm1 (0.08660), Yeats4 (0.08303), Ncoa4 (0.07995), Ilf3 (0.07768), Myc (0.07605), Tfdp2 
(0.07427)

Insm1 (-0.00032), Cebpe (-0.00050), Scmh1 (-0.00051), Insm1 (-0.00079), 
Klf3 (-0.00092), Runx1 (-0.00127), Cited2 (-0.00220), Cops2 (-0.00259), 
Foxd4 (-0.00299), Zfp318 (-0.00328), Arid1a (-0.00427), Zhx2 (-0.00678), 
Foxd4 (-0.00688), Sp100 (-0.00715), Nfkbia (-0.00817), Phf21a (-0.00981), 
Foxp1 (-0.01017), Arntl (-0.01370), Tcf7 (-0.01568), Chd7 (-0.01666), Mll5 (-
0.01698), Cbx7 (-0.02701), Skil (-0.02705), Mef2a (-0.03217), Mef2d (-
0.03378), Tbx6 (-0.04734), Foxj2 (-0.04929)

III

Mybl2 (0.13071), Uhrf1 (0.12977), Dnmt1 (0.12448), Cbx5 (0.12303), Asf1b (0.11480), Atad2 (0.11404), 
Foxm1 (0.11340), E2f8 (0.10760), Suv39h1 (0.09567), Hmgb2 (0.09145), Smarca5 (0.08769), Suz12 
(0.07860), Tcf19 (0.07735), Rbl1 (0.07707), Dnmt1 (0.07516), E2f7 (0.07288), E2f1 (0.06571), Hat1 
(0.05195), Zfp367 (0.04479), Cbx1 (0.04208), Ruvbl2 (0.02621), Actl6a (0.01515), Prmt7 (0.01185), Whsc1 
(0.00794)

Klf12 (-0.00006), Ciita (-0.00007), Nfe2l1 (-0.00019), Chd7 (-0.01427), Foxj2 
(-0.08071)

IV

Stat1 (0.14593), Ets1 (0.12860), Irf7 (0.12815), Irf9 (0.12574), Bcl11b (0.12118), Elk4 (0.11792), Dtx3l 
(0.11713), Sp4 (0.11037), Lef1 (0.10750), Aes (0.09907), Tox (0.08587), Trim14 (0.07598), Tcf7 (0.07565), 
Gata3 (0.07018), Nfatc3 (0.06842), Sp100 (0.06375), Bbx (0.04957), Nfatc1 (0.04311), Egr2 (0.04123), Nab2 
(0.03345), Eya2 (0.03212), Arid5b (0.02599), Foxo1 (0.02590), Zbtb7b (0.02497), Bach1 (0.02473), Stat2 
(0.02311), Trps1 (0.02105), Zhx2 (0.02079), Cbfa2t3 (0.01978), Tcfe3 (0.01690), Bcl3 (0.01582), Fhl2 
(0.01541), Mysm1 (0.01517), Irf1 (0.01465), Ets2 (0.01437), Chd3 (0.01281), Maf (0.01267), Cebpb 
(0.01238), Zbtb16 (0.01062), Trim25 (0.01011), Hif1a (0.01010)

Bbx (-0.00001), Runx2 (-0.00007), Mybl1 (-0.00008), Etv3 (-0.00044), Klf12 (-
0.00057), Lmo2 (-0.00072), Egr3 (-0.00085), Nfe2l1 (-0.00090), Scmh1 (-
0.00091), Rorc (-0.00188), Arid3a (-0.00202), Dpy30 (-0.00244), Smad3 (-
0.00266), Irf8 (-0.00270), Myef2 (-0.00272), Mxd4 (-0.00292), Hmgn3 (-
0.00318), Notch3 (-0.00378), Erg (-0.00408), Cbfa2t3 (-0.00434), Atf6b (-
0.00750), Fli1 (-0.00800), Hivep1 (-0.01004), Creg1 (-0.01091), Tbx21 (-
0.01110), Bach2 (-0.01174), Nfe2 (-0.01229), Batf3 (-0.01874), Tcfe2a (-
0.01912), Stat6 (-0.02713), Ctbp2 (-0.02789), Csda (-0.03038), Cux1 (-
0.03103), Tcf4 (-0.03363), Lyl1 (-0.04204), Irf5 (-0.07354)

V

Sap18 (0.14917), Cnbp (0.13536), Churc1 (0.13057), Phf5a (0.12564), Ascc1 (0.11930), Npm1 (0.11809), 
Taf1a (0.10991), Smyd3 (0.09630), Myc (0.08925), Elof1 (0.08740), Dpy30 (0.08163), Aatf (0.06641), Taf9 
(0.06271), Morf4l2 (0.05379), Bud31 (0.04587), Mynn (0.03765), Hat1 (0.03294), Actl6a (0.03264), Taf4b 
(0.01999), Lztr1 (0.01040), Zeb1 (0.00742), Eny2 (0.00648), Pfdn1 (0.00570), Rarb (0.00436), Creg1 
(0.00356), Pou2af1 (0.00348), Hdac2 (0.00346), Kat2a (0.00268), Zfp36l2 (0.00227), Dmtf1 (0.00213), Atoh1 
(0.00198), Klf15 (0.00167), Bag1 (0.00135), Smad7 (0.00081), Stat2 (0.00058)

Foxd4 (-0.00011), Tbx6 (-0.00012), Mycl1 (-0.00055), Ppard (-0.00063), 
Mef2a (-0.00087), Pbx2 (-0.00115), Nr1h3 (-0.00119), Arid1b (-0.00237), 
Hivep3 (-0.00351), Arid1a (-0.00427), Ncoa4 (-0.00436), Cited2 (-0.00710), 
Cbx2 (-0.00776), Trp73 (-0.00807), Kdm5a (-0.00900), E2f4 (-0.01061), 
Vezf1 (-0.01129), Arntl (-0.01303), Klf7 (-0.01528), Runx3 (-0.01775), Pbrm1 
(-0.01881)

VI

Tbx21 (0.19857), Nab1 (0.11685), Creg1 (0.09253), Trps1 (0.09029), Atf6 (0.08918), Klf6 (0.07367), Irf5 
(0.06850), Hlx (0.06800), Sfpi1 (0.05930), Tcfe3 (0.05883), Rxra (0.05401), Id2 (0.05328), Bach1 (0.03273), 
Rbpj (0.03055), Ciita (0.02894), Pias3 (0.02816), Eomes (0.02623), Rara (0.02512), Klf12 (0.02474), Relb 
(0.02433), Rora (0.01946), Kcnip3 (0.01671), Smyd1 (0.01663), Eya1 (0.01246), Cebpa (0.01210), Creb3l1 
(0.01189), Mef2c (0.01122), Runx2 (0.01091), Zbtb16 (0.00910), Ncoa7 (0.00846), Aebp2 (0.00841), Nab1 
(0.00773), Phf21a (0.00655), Smad3 (0.00618), Klf10 (0.00555), Stat4 (0.00552), Mef2a (0.00541), Elk3 
(0.00403), Zfp105 (0.00384), Mitf (0.00356), Prdm1 (0.00341), Mbd2 (0.00332), Zeb2 (0.00182)

Nfe2l1 (-0.00002), Zbtb16 (-0.00017), Taf2 (-0.00039), Pax5 (-0.00040), Hic1 
(-0.00049), Mycn (-0.00064), Hmgn3 (-0.00075), Pou2af1 (-0.00086), Zfp318 
(-0.00096), Nfkb1 (-0.00123), Pparg (-0.00123), Relb (-0.00146), Cebpb (-
0.00179), Zfhx3 (-0.00251), Dach1 (-0.00308), Rfx5 (-0.00318), Ebf1 (-
0.00503), Maf (-0.00534), Gata3 (-0.03291), Mllt3 (-0.06697), Bcl11b (-
0.08264)

VII

Ets1 (0.12860), Zfp187 (0.12438), Elk4 (0.11792), Clock (0.11368), Sp4 (0.11037), Aes (0.09599), Tbx21 
(0.09530), Eya2 (0.07899), Gata3 (0.07888), Nr1d2 (0.07221), Nfatc3 (0.06842), Lef1 (0.06083), Tox 
(0.05751), Zfp59 (0.05314), Bbx (0.05151), Dmtf1 (0.04609), Trim14 (0.04462), Nfatc1 (0.04311), Bcl11b 
(0.04267), Tcf7 (0.03363), Pias1 (0.03060), Hltf (0.02800), Foxo1 (0.02590), Ncoa7 (0.02458), Nfkbia 
(0.02225), Nfat5 (0.02223), Zhx2 (0.02079), Fam48a (0.01842), Lrrfip1 (0.01492), Dtx1 (0.00974), Smarca2 
(0.00706), Rreb1 (0.00658), Sp4 (0.00538), Carf (0.00418), Nfe2l1 (0.00336), Tcf4 (0.00294)

Prmt5 (-0.00077), Chd7 (-0.00206), Nfix (-0.00524), Klf3 (-0.00962), E2f2 (-
0.02025), Tcf4 (-0.04781), Irf5 (-0.04990), Mef2c (-0.07252), Lmo2 (-0.10023)
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VIII

Sp100 (0.18604), Gm9907 (0.15225), Aes (0.14660), Whsc1l1 (0.13665), Nfatc2 (0.11862), Nab1 (0.11685), 
Stat6 (0.11580), Fli1 (0.10261), Ets1 (0.09717), Sp4 (0.09585), Lrrfip1 (0.09217), Bcl11b (0.08689), Irf7 
(0.08672), Lef1 (0.08451), Gata3 (0.08351), Atf6 (0.08293), Eya2 (0.07776), Tcfe3 (0.07371), Klf6 (0.07367), 
Smad7 (0.07234), Eno1 (0.06954), Irf1 (0.06945), Tcf7 (0.06783), Tox (0.06681), Klf3 (0.06344), Trim14 
(0.06131), Nfatc1 (0.05931), Id2 (0.05865), Arid3b (0.05562), Nfkb1 (0.05508), Dmtf1 (0.05418), Rxra 
(0.05401), Dtx3l (0.05378), Cbx7 (0.05009), Chd7 (0.04803), Foxk1 (0.04781), Trps1 (0.04418), Pias3 
(0.04416), Rcbtb1 (0.04171), Foxo4 (0.04117), Klf13 (0.03844), Arid5b (0.03756), Ezh1 (0.03702), Phf1 
(0.03498), Foxo3 (0.03465), Tbx21 (0.03319), Rbpj (0.03055), Ctbp2 (0.02885), Lztr1 (0.02775), Klf2 
(0.02727), Smad4 (0.02646), Eomes (0.02623)

Nfe2l1 (-0.00002), Mbd2 (-0.00030), Taf2 (-0.00039), Gfi1b (-0.00040), Stat2 
(-0.00042), Tcf20 (-0.00075), Zbtb16 (-0.00076), Scmh1 (-0.00082), Wdr5 (-
0.00082), Eya1 (-0.00119), Nfkb1 (-0.00123), Atf3 (-0.00125), Nfatc1 (-
0.00133), Relb (-0.00146), Creg1 (-0.00148), Pou2af1 (-0.00149), Csda (-
0.00175), Tcf4 (-0.00216), Insm1 (-0.00238), Zfpm1 (-0.00242), Srebf2 (-
0.00251), Zfhx3 (-0.00251), Cby1 (-0.00284), Zfp187 (-0.00297), Rfx5 (-
0.00318), Meis1 (-0.00348), Zeb1 (-0.00376), Tcfeb (-0.00379), Klf8 (-
0.00391), Zfp219 (-0.00425), Trerf1 (-0.00467), Tceal8 (-0.00488), Hsf2 (-
0.00507), Maf (-0.00534), Tcf7l2 (-0.00568), Ciita (-0.00688), Hmgn3 (-
0.00735), Nr4a3 (-0.00922), Ruvbl1 (-0.00935), Rbpj (-0.01099), Tcfe2a (-
0.01194), Pax5 (-0.01257), Bcl6 (-0.01332), Hlx (-0.01367), Foxp4 (-
0.01427), Mitf (-0.01525), Clock (-0.01616), Etv6 (-0.01949), Cux1 (-
0.02021), Morf4l2 (-0.02046), Ctbp2 (-0.02314)

IX

Klf6 (0.11658), Atf6 (0.08293), Trps1 (0.07726), Rxra (0.07582), Tcfe3 (0.07371), Eno1 (0.07358), Zfhx3 
(0.07137), Ddx3x (0.07125), Xbp1 (0.07059), Rbpj (0.06844), Ctbp2 (0.06825), Creb3 (0.06748), Nab1 
(0.06699), Cebpg (0.06431), Cops2 (0.06321), Stat6 (0.06317), Creg1 (0.05953), Irf5 (0.05804), Bach1 
(0.05604), Id2 (0.04916), Trps1 (0.04418), Pias3 (0.04416), Zhx1 (0.04315), Smad2 (0.03993), Klf6 
(0.03992), Nfil3 (0.03837), Sp140 (0.02813), Ncoa7 (0.02466), Batf3 (0.02039), Klf12 (0.01619), Nfe2l2 
(0.01309), Tbx21 (0.01176), Hltf (0.01164), Hic1 (0.01138), Klf10 (0.01102), Klf9 (0.01049), Dach1 (0.01012), 
Epas1 (0.00989), Rbl2 (0.00439), Eomes (0.00416), Smad3 (0.00365), Atf3 (0.00191), Zfp36l2 (0.00178), 
Prdm1 (0.00097)

Maf (-0.00028), Scmh1 (-0.00082), Zfp318 (-0.00129), Zbtb7b (-0.00175), 
Tead2 (-0.00176), Pax5 (-0.00260), Rfx7 (-0.00283), Zeb1 (-0.00376), 
Hmgn3 (-0.00735), Satb1 (-0.00772), Elf1 (-0.01238), Foxp4 (-0.01427), 
Hdac7 (-0.04065), Ets1 (-0.06405)

X

Tbx21 (0.19857), Klf6 (0.11658), Trps1 (0.07726), Atf6 (0.07254), Nab1 (0.06699), Tcfe3 (0.06657), Irf5 
(0.05804), Rbpj (0.05642), Id2 (0.04916), Sp140 (0.02813), Klf12 (0.02474), Ncoa7 (0.02466), Elk4 
(0.02208), Runx2 (0.02107), Foxp1 (0.02092), Batf3 (0.02039), Eomes (0.01993), Pou2af1 (0.01955), Rora 
(0.01946), Sp4 (0.01878), Pax5 (0.01838), Kcnip3 (0.01671), Smyd1 (0.01663), Pias3 (0.01162), Itgb3bp 
(0.00927), Zbtb16 (0.00910), Ets1 (0.00786), Nab1 (0.00773), Phf21a (0.00655), Bhlhe41 (0.00609), Fhl2 
(0.00534), Stat4 (0.00442), Rfx5 (0.00442), Elk3 (0.00403), Zfp105 (0.00384), Pcgf2 (0.00372), Zeb2 
(0.00182), Zbtb38 (0.00154), Rxra (0.00102), Zbtb16 (0.00080), Hic1 (0.00065), Gm9907 (0.00058), Runx3 
(0.00044)

Maf (-0.00028), Etv3 (-0.00046), Hic1 (-0.00049), Mycn (-0.00064), Zfp318 (-
0.00129), Zfp219 (-0.00131), Zbtb7b (-0.00175), Runx1 (-0.00248), Pax5 (-
0.00414), Zbtb7b (-0.00431), Nab2 (-0.00502), Prdm1 (-0.00731), Srebf2 (-
0.00753), Pax5 (-0.00769), Hdac7 (-0.08544)
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Supplementary Table 3: Predicted transcriptional regulators of gene clusters. Complete 

table of predicted regulators identified in Figure 2. Ranked by predicted regulator weight 

(weight in parenthesis). 
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Supplementary Table 4 
  

    
ii 

 

Fold Change: 
Listeria/VSV 

Probe ID Gene Name Memory Effector 
10401935 BC005685 1.713 2.542 
10504757 BC005685 1.99 2.791 
10538901 BC005685 1.861 2.601 
10599802 Cd40lg 1.665 2.671 
10512774 Coro2a 1.767 2.008 
10419736 Dad1 1.106 2.225 
10374117 Gm11401 0.958 2.276 
10457927 Gm5502 0.978 2.008 
10574246 Gpr114 2.679 3.107 
10552118 LOC100044517 1.148 2.12 
10491406 Ndufb5 1.065 2.045 
10407390 Ptbp1 0.955 2.238 
10433902 Rpl30 1.014 2.003 
10382369 Rpl38 1.065 2.103 
10509560 Rpl38 1.08 2.283 
10544812 Rpl38 1.076 2.278 
10548976 Rpl38 1.07 2.273 
10412098 Rpl41 0.872 2.052 
10508721 Snora44 1.047 2.089 
10558919 Snora52 0.995 2.07 
10355017 Sumo1 1.25 2.033 
10400023 Tspan13 1.079 2.083 
10520965 Yes1 1.199 2.728 

    iii 
   Probe ID Gene Name Memory Effector 

10594825 Aqp9 2.313 2.355 
10574246 Gpr114 2.679 3.107 
10548535 Klra3 4.237 3.233 
10547590 Klrg1 5.976 5.879 
10504761 LOC641050 2.127 2.423 
10451763 Satb1 4.555 2.002 

    iv 
   Probe ID Gene Name Memory Effector 

10490923 Car2 0.241 0.478 
10346790 Ctla4 0.387 0.468 
10422496 Gpr183 0.471 0.663 
10446771 Lclat1 0.304 0.631 
10356866 Pdcd1 0.362 0.367 
10351691 Slamf6 0.468 0.65 
10511416 Tox 0.307 0.51 
10562044 Zbtb32 0.481 0.567 
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vi 
   Probe ID Gene Name Memory Effector 

10439744 Cd96 2.142 1.413 
10503166 Chd7 2.271 1.118 
10503180 Chd7 2.031 1.455 
10392183 Ern1 2.415 1.551 
10407281 Esm1 4.782 1.24 
10411229 F2r 2.049 1.527 
10359434 Fasl 2.069 1.264 
10498775 Golim4 2.032 1.004 
10412207 Gpx8 3.137 1.052 
10412298 Itga1 2.473 1.334 
10363082 Lilrb4 2.061 1.465 
10519951 Pion 2.53 1.561 
10554863 Sytl2 2.349 1.387 
10482448 Zeb2 3.432 1.484 

    vii 
   Probe ID Gene Name Memory Effector 

10490923 Car2 0.241 0.478 
10346790 Ctla4 0.387 0.468 
10356866 Pdcd1 0.362 0.367 
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Supplementary Table 4: A minority of genes demonstrate bias toward a given infection. 

Table of fold changes of Lm-OVA vs. VSV-OVA infections in either memory from Figure 

6c where x-values represent Memory and y-values represent Effector. Roman numerals 

correspond with each quadrant in Figure 6c. 
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Fig. 1: Relationship between the yield of intermediate 
cRNA and labeled ssDNA probe, for all ImmGen 
samples.  

Much of the gene expression profiles generated so far by the ImmGen project were 
obtained using hybridization to microarray supports. Preliminary tests and results supporting 
the choice of the Affymetrix 1.0 ST platform have been reported1. Here, we will document the 
data generation pipeline adopted for the project, the quality control (QC) steps and the criteria 
for data exclusion, as well as some of the basic analysis guidelines used to analyze expression 
across ImmGen data. The criteria evolved with experience and with the profiling of substantial 
numbers of cell-types, and those described are those adopted as of Feb 2012. Data and QC 
metrics for all ImmGen datasets as of this date are listed in Table 1. 

 
I. Data Generation 
Per ImmGen SOP, the final cytometric sorts (typically from 10,000 to 30,000 cells, 

although 10% of attempted samples were below 10,000 cells) were performed directly in Trizol 
(no more than 5.104 cells in 500 ul Trizol), frozen after 2 minutes, and sent to the ImmGen 
core team in Boston. RNA was prepared from the Trizol lysate by Chloroform extraction and 
isopropanol precipitation in the presence of Glycoblue carrier. The pellet was washed with 
ethanol, air-dried, and finally taken up in 12.5 µl dH2O. Early pilots showed that RNA 
quantitation by micro-spectrofluorimetry in preparations from the low cell numbers typical in 
ImmGen was rather unreliable, and not a valuable predictor of labeling efficiency and 
microarray data quality. Thus, each RNA sample were used in its entirety, without prior 
quantitation, decisions on whether to hybridize to the microarray made on the basis of the 
amount of ssDNA probe obtained. 

Probe amplification and labeling and 
hybridizations were performed, for essentially 
all samples, at Expression Analysis, Durham, 
NC. The starting total RNA was converted 
and amplified into antisense cRNA, and then 
was converted into ssDNA, which was 
fragmented and labeled with Biotin before 
being hybridized to Affymetrix Mouse Gene 
ST 1.0 microarrays. 

RNA was first converted to sense-
strand cDNA using the Ambion WT 
Expression Kit, in a reverse-transcription 
reaction with primers designed using a 
proprietary oligonucleotide-matching 
algorithm to avoid rRNA binding, thereby 
providing comprehensive coverage of the 
transcriptome while significantly reducing 
coverage of rRNA.  This method also avoids 
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Fig. 2: Relationship between the yield of labeled ssDNA 
probe and the dynamic range of the resulting ST1.0 
data, across all ImmGen samples. Red dots are those 
that eventually failed QC, some because of poor 
dynamic range, others for contamination or other issues. 

the 3’ bias inherent in methods that prime exclusively with oligo-dT-based primers. During 
processing, the concentrations of the intermediate cRNA and sense-strand cDNA samples 
were evaluated using a NanoDrop micro-spectrophotometer.  Up to 10ug of cRNA was used 
for sense-strand cDNA synthesis. Subsequently, 0.7 to 2.75ug of the resulting sense-strand 
cDNA was fragmented and labeled using uracil-DNA glycosylase (UDG) and 
apurinic/apyrimidinic endonuclease 1 (APE1).  APE1 recognizes and fragments the cDNA at 
dUTP residues, which were incorporated during the 2nd-cycle. Finally, ssDNA was labeled by 
terminal deoxynucleotidyl tranferase (TdT) using the Affymetrix DNA Labeling Reagent. 

There was strong correlation between yields of cRNA and ssDNA (Fig. 1), discounting 
cRNA levels above 10 µg, since only 10 µg were used for ssDNA synthesis. 

The yield of both the cRNA and ssDNA intermediates proved to be reliable metrics, and 
good predictors of data quality.  Since ssDNA was the material that was actually hybridized to 

the microarray, ssDNA yield was taken as 
the benchmark to decide whether or not to 
hybridize each preparation. Fig.2 shows the 
relationship between the ssDNA yield and 
the final data quality, assessed here by the 
signal’s dynamic range (DR); as will be 
discussed below, samples with a dynamic 
range >60 were considered to be of very 
good quality, those with DR between 40 and 
60 acceptable. After the first batches, 
samples yielding less than 0.7 µg ssDNA 
were not used for microarray hybridization, 
unless stemming from rare cell-types (and 
only a small minority, <50%, eventually 
passed the later QC steps). As might be 
predicted, these low yields corresponded to 
rare populations which were the most 
difficult to sort. 

All ImmGen data posted on the web server and deposited in the GEO database were 
generated in 37 independent batches. To monitor batch effects, each batch included a pair of 
common RNA samples, from whole CD4+ and CD19+ splenocytes. These consistently passed 
the ssDNA threshold. 

Hybridization cocktail was prepared using the Hybridization, Wash and Stain kit 
(Affymetrix), applied to Mouse Gene ST 1.0 arrays, and incubated at 45°C for 16 hours. 
Following hybridization, arrays were washed and stained with fluorescent streptavidin using 
standard Affymetrix procedures before scanning on the Affymetrix GeneChip Scanner and data 
extraction using the Affymetrix Expression Console. A primary array QC metric at this step 
was Positive versus Negative AUC (area under the curve), which is akin to Signal to Noise – it 
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relates to the ability to distinguish true signal from noise. A Pos. vs. Neg. AUC value of > 0.8 
passed array QC metrics at Expression Analysis.  
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Fig. 3: Drift in expression values from inclusion of additional 
datasets. To evaluate the impact of including additional batches of data 
into the ImmGen datagroup, the post-normalization expression values 
for a set of 20 representative genes were recorded (in 40 populations) 
after iterative inclusion of additional batches to 30 datasets picked at 
random. The lines represent the observed values (standardized to the 
value observed when including all 750 datasets), and are color-coded 
by gene (each line representing a different population). The Y-axis on 
the display is scaled to the 0.2-5 range of differential expression 
commonly observed across ImmGen populations. The drift in post-
normalization values is minimal, and reduced even further beyond 350 
samples; note also that the slight drift in post-normalization intensities 
coordinately affect all populations, such that the drift in fold change 
between populations for the same gene would be even smaller. 

II. Data Preprocessing 
Microarrays were scanned in the Affymetrix GeneChip Scanner 3000 7G instrument, and 

the image data processed to generate primary .cel files, which were then used for normalization 
and for QC analysis. Quality control statistics were generated for each sample, and the samples 
that passed (see section III below) were then included in a new normalization run together with 
all previous ImmGen samples that had previously passed quality control. 

 
1. Preprocessing and Normalization  
Each new batch of .cel files returned from Expression Analysis to the Boston core team 

was normalized, using Affymetrix Power Tools’ “apt-probeset-summarize” executable with the 
rma-sketch standard method. Robust Multichip Average (RMA, ref2) was the algorithm used for 
feature-level normalization, the de facto standard for Affymetrix microarrays. 

Once every three months, all ImmGen samples (including samples that had previously 
failed QC) were re-normalized together and analyzed with quality control metrics for 
verification. These regular releases were passed on to the ImmGen group for biological 

curation and analysis, and 
were also the source of the 
data loaded onto ImmGen’s 
public data browsers. We 
analyzed the possible drift in 
ImmGen data over time, 
resulting from the inclusion of 
additional datasets. A 
simulation experiment was 
performed in which the effect 
of adding additional batches of 
30 samples was tested, reading 
out the reported expression 
value (normalized to the value 
obtained with 750 samples). 
As shown in Fig. 3, the effect 
of additional batches of 
samples was very small, in 
comparison to the range of 
expression values found across 
ImmGen data, particularly 
after the first few hundred 
samples. 
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Fig. 4: Example of cross-hybridizing feature. Each row of this heatmap representation depicts the expression 
of a single feature of Foxe1, for all ImmGen populations (in columns). The 6th feature from the top show uniformly 
high expression, without the variation seen in all other features of the gene, and correspondingly did not correlate 
well with the entire gene’s expression. 

 

 

 

2. Removal of erroneous or misleading probes 
The Affymetrix Mouse Gene ST1.0 Array has over 750,000 distinct 25-mer probes 

(“features”). Each feature targets a specific exon of the target genes, with good coverage 
throughout, allowing analysis of exon-level transcription. For normal use, the features that 
correspond to a gene are consolidated into one “probesets” (where each probeset 
corresponds to a gene or locus, for 35,518 probesets on the MouseGene ST1.0 array). Each 
probeset summarizes values from 24-40 features, with considerably less noisy data. Most genes 
are represented by a single probeset on the ST1.0 array. 

A number of features or probesets present in the primary data were removed prior to 
normalization. These probes represent glitches in the processing, are uninformative or give 
suspect of erroneous data, and were thus removed from the data releases. 

 
Un-annotated or Duplicate-Read probes: The CSV annotation file for the ST1.0 arrays was 

downloaded from the Affymetrix website. Probesets whose Gene Symbol assignment was listed 
as “---” were removed, as these correspond to array controls or to intergenic sequences on 
unknown significance, which often exhibit very high inter-replicate noise. We also realized that 
the Affymetrix processing algorithm generates results for “fantom” probesets that are merely 
multiple replicates of the same probeset (e.g. for Snord115 probesets 10564013 and 
10564017), with expression values identical to the 9th decimal. Including multiple copies of these 
probesets would distort pre-processing or later cluster analyses. Thus, only one example of 
these probesets was retained. 

 
Remove features with spuriously high values: While the majority of features yielded signals 

that correlated with the probeset as a whole, a minority of features yielded very high signals, 
which were uniformly high and inconsistent with the expression of the probeset or with other 

features mapping to the same exon. While they might possibly correspond to unknown RNA 
species, these aberrant features were considered irrelevant to the gene as a whole and most 
likely due to spurious cross-hybridization. They were removed since they might erroneously 
suggest expression in cell-types in which a given gene was otherwise silent (Fig. 4). A total of 
2372 features (1 per gene at most) were removed from consideration prior to RMA 
normalization, if the following criteria were met: feature with high expression (>10.0 after log2 
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Fig. 5: Comparison of RNA-seq and microarray-based profiles. RNAs from the same bulk CD4+ T or CD19+ 
B splenocytes were profiled on ST1.0 microarrays as usual, or by deep RNA-seqencing on the Illunina platform 
(Doran G., in preparation). Sequence reads were mapped to individual genes represented on the microarray. 
Blue lines denote the expression thresholds with either technique; Red dots are genes that gave suspiciously high 
signals on the microarray and were removed from the public datagroups. 

 
 

transformation), and with low max/min range across all ImmGen data (<=3-fold change after 
log2 transformation), and with low correlation to its probeset in comparison to other features 
of the same probeset (Pearson coefficient < .4 and in bottom 0.2 quantile of features within its 
probeset). 
 

Remove probes that are discordant with RNA-seq results: The same CD4 and CD19 controls 
included in each batch of microarray processing were also analyzed by deep RNA sequencing 
(RNA-seq; ~2x108 Illumina paired end reads; details reported elsewhere, Doran et al, in 
preparation). Comparison of the RNAseq results with the microarray data (Fig. 5) showed 
generally good agreement with the microarray results, as many of the genes scoring as 
expressed by RNA-seq (>1 FPKM - fragments per kilobase of exon per million fragments 
mapped) were also positive by microarray (> standard ImmGen threshold of 7, after log2 
transformation). A fraction (18%, 1599/9031) of the transcripts detected by RNA-seq scored 
below threshold on the microarray (log2 expression <7) or were simply absent from the 
microarray (7%, 666/9031). More a problem were transcripts that scored robustly on the 
microarray but were essentially not detected in either of the RNA-seq runs (red dots on Fig. 
5). These were considered to result from cross-hybridization on the microarray, a hypothesis 
supported by the nature of the transcripts, many of which corresponded to very homologous 
multigene families (e.g. Hist1). These transcripts were removed from the released datagroups. 

 
Overall, uninformative or questionable probesets and features have been removed as 

described from the data presented on ImmGen data browsers and smartphone supports, and 
from custom data supplied on request through the ImmGen site. On the other hand, all 
probesets and features are retained in the raw .cel files available from the NCBI GEO database 
(accession # GSE15907). 
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Fig. 6: Dynamic  range of all  ImmGen  
samples, before or after data normalization  

 

Fig. 7: Post-normalization expression histograms  of two representative datasets, one with good dynamic 
range (left, DR=85) or borderline dynamic range (right, DR=55). X-axis: expression value (log2-transformed). 
Note how negative transcripts are clearly demarcated on the left profile, but creep up towards the positive 
range in the lower-quality dataset at right. 

III. Quality Control on ImmGen Microarray data 
 

Several QC steps were implemented during the pre-processing of ImmGen microarray 
data. These were used to remove datasets that were of low intrinsic quality, showed indications 
of likely to resolve discrepancies. Note that these QC standards evolved over the course of the 
project, and continue to be refined, such that the public data may slightly evolve over time. 

 
 
 1. Dynamic Ranges 
After experience, the dynamic range (DR, or the 

ratio between the highest and lowest signal values in a 
single dataset), became the primary metric of quality 
for individual expression profiles. To avoid confounding 
by single outliers, the DR was calculated for each 
dataset by dividing the 95th by the 5th percentile of 
expression values. In practice, the dynamic range was 
calculated after pre-processing, but this value was 
highly correlated with dynamic range in the raw data 
(Fig. 6). 

Low dynamic range denoted low signal intensity 
on the chip, and generally corresponded to samples from lower cell numbers, and thus limited 
amount of ssDNA probe (Fig. 2). The corrections introduced during the initial steps of data 
processing and of normalization resulted, for poor data, in an amplification of the signal 
intensities of un-expressed and negative control probes, as illustrated in Fig. 7 for two samples 
of different dynamic ranges.  Indeed, the position of the main peak (calculated as the “primary 
mode” of a Gaussian decomposition) was another measure of data quality, highly correlated to 
the DR. The expression/expression plots of Fig. 8 show that with two well-amplified samples, 
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Fig. 8:  Expression/expression plots comparing samples with good (80) or bad (30) DR scores. 

 

Fig. 9:  Distribution of Dynamic Range scores across all ImmGen samples. The plot at left depicts all acquired 
samples, prior to QC, the plot at right depicts the DR scores of retained samples (mean DR score of 86.8). 
Some data with a DR score below 60 were retained in the ImmGen datagroup, but are flagged on the web 
display, in particular because of their higher values for non-expressed genes. 

there was symmetry along the x=y axis, but that comparing samples with very different DR 
values led to a distortion in the comparison (for illustration only, an unacceptably bad sample is 
shown here). 

In practice, all samples with dynamic range below 40 were systematically dropped. 
Samples with DR scores between 40 and 60 were closely inspected for other metrics (in 
particular, examining the match with other replicates for the same cell-type), and were retained 
if they originated from difficult-to-sort populations and/or did not generate high intra-
population variation (see section III.3). The overall distribution of DR metric for all ImmGen 
samples is shown in Fig. 9; the median DR score for retained samples is of 86.8, and only 7.5% 
of retained datasets had a DR<60. 

We assessed whether and how the inclusion of datasets with somewhat different dynamic 
range generated false-positives in the identification of variably expressed genes across the 
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Fig. 10: Influence of the difference in dynamic range in a pairwise comparison between two individual ImmGen 
datasets and the false-positive rate. Pairwise comparisons where one population had a DR of 70-90, and the other 
any DR value along the range, counting the number of transcripts with a FoldChange >3. Black and red dots are 
measures of: false-positives, from comparisons of replicates within individual populations (red dots are for those 
failing QC metrics). Blue dots are a reference from similar pairwise comparisons between populations. 

ImmGen datagroup, an element of key importance in a compendium of this nature. In Fig. 10, 
we plotted the number of genes varying by more than 3-fold in a pairwise comparison; these 
were measured in pairs of replicate datasets from a given cell-type, where one dataset had a 
dynamic range between 70 and 90 and the other varied across the entire range of DR values. 
As expected, very poor quality datasets (DR<40) gave rise to very high numbers of false-
positives (500 to 10,000), but datasets with DR between 60 and 120 yielded a roughly even 
proportion of false-positives (0.05, 0.95 quantiles 1 and 264 genes, median 14 genes). This range 
was well distinguished from similar inter-population comparisons (0.05, 0.95 quantiles 337 and 
3021, median 1439). 

 

 
 2.  ImmGen-Wide Correlations 
Another important flag for data QC was a determination of the correlation of new 

datasets to the ImmGen-wide data. Since ImmGen encompasses a wide variety of different 
immune system cells, there was no expectation of uniform results. But a low level of 
correlation with any other dataset was usually a flag for suspicious data (with the exception of 
very different cell types like stromal cells).  
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Fig. 11: Correlation matrix across all hematopoietic cell-types among  ImmGen samples (bad data included). 
The isolated blue streak denote poor quality samples, although the grouped streak (~samples 50-65) represent 
neutrophils. 

A correlation matrix was drawn for each dataset using the “ImmGenQC” GenePattern 
plug-in, facilitating the identification of outlier datasets (as a “blue streak” in Fig. 11). Samples 
that did not have an ImmGen-wide CC above .97 with any other sample were flagged as 
suspect samples, except for those cell-types that naturally showed little correlation to other 
ImmGen populations, yet strong intra-group correlation (e.g. neutrophils or stromal cells). 
Maximum correlation coefficients for all ImmGen populations are shown in Table 1. 
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Fig. 12 : Distribution of gene-wise inter-replicate Coefficients of Variation for individual cell-types. The 
example shown at right has a good  CV distribution, with a median between 0.1 and 0.15, while the example at 
left shows a far greater proportion of noisy data, with median CV at 0.21. 

3. Population Coefficient of Variations 
The ImmGen standard was to profile three biological replicates per cell-type examined. 

With these triplicates, a coefficient of variation (CV; computed as the Standard Deviation 
divided by the Mean of triplicate data) was determined for each gene on the microarray and for 
each cett-type. As previously discussed1, the distribution of these gene-wise CVs was a good 
indication of the aggregate data quality for a given population. Any population with a median CV 
above 0.20 (such as the example shown in Fig. 12, left panel) was examined to determine why 
there was so much variation between biological replicates. The usual reason was that one of 
the replicates either had a poor or borderline DR score. This replicate was then removed, 
based on consideration of other data metrics (on the aggregate 14 datasets were removed for 
poor concordance and intrinsically borderline quality). Post-QC, the median intra-population 
CV ranged from .056 to .185 (median .102) across retained ImmGen data. 

In some cases, more than three replicates were profiled for one cell type, all of the 
replicates passed the DR and ImmGen-wide CC metric for individual datasets, and all replicates 
were classified as quality samples. However, in some cases, a few replicates were on the lower 
end of the ImmGen QC assessment, and by dropping them and re-classifying them as poor 
quality samples, the population as a whole had a lower median CV value (dropping below 0.20); 
in such cases, the three best replicates were kept. 

In some cases, triplicates were profiled and initially passed QC standards, but were later 
re-classified as poor quality samples, with evolving standards. Such populations were not 
necessarily re-profiled, and thus the population does not have three quality replicates. In most 
cases there were at least two replicates; in 5 cases, there was only one quality replicate (which 
should be treated with caution). 
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4. Detection of contaminated populationss 
The quality control metrics described above deal with quality of the expression datasets. 

In addition, the datasets were searched for signs of contamination by analyzing transcripts 
expressed at high levels specifically in particular populations. This search was straightforward 
for some cell-types for which highly specific transcripts could be defined, such as 
immunoglobulins for B cells or hemoglobins for erythrocytes, but not as clearcut for others (in 
particular for contamination with myeloid cells. The transcripts included: 

For T lymphocytes, Lat , Fyb, Thy1, Tcf7, Cd3g; for B lymphocytes, Igh-6, Ms4a, Igj, Cd79b, 
Pax5, Igk; for myeloid cells, Tlr13, Anxa3, IL13ra1, Alox5ap. For red blood cells, Hba-a1, Hba-a2. 

In addition, Hspa8 was used to denote possible stress in the sorted cell preparation. 
Some level of contamination with erythrocyte RNA is unavoidable for some cell 

preparations (understandably, those from blood or bone marrow), even with stringent 
exclusion at the sort stage. The extremely high levels of hemoglobin mRNA in red cells (30% of 
total mRNA) ensures that traces contamination will lead to visible signals for Hb genes. In 
practice, datasets showing traces of Hb signals were not removed from the public data groups, 
but expression of the following genes should be treated with caution: Hba, Hba, Hbb, Gm5226, 
Alas2, Gypa, Epb4.2, Slc4a1. 

ImmGen data were generated from male mice to allow coverage of ChrY-encoded genes, 
with the exception of samples from fetal cells for which both sexes were pooled. Expression of 
Xist was used to identify gender errors (the cell preparation was repeated in such cases). 
 
 
 5. Batch effects.  

Batch effects are an important source of confounders in gene expression profiling. 
ImmGen data were acquired over a 3-year period in 47 different batches (as of June 2011). 
Batch analysis with tools commonly used to extract batch-specific variation (e.g. PCA) was 
difficult to apply in this instance, as different batches were usually composed of different cell-
types over time. Analysis of the constant samples from CD4+ and CD19+ controls included in 
most batches batch served as an indicator of serious defects in processing of individual batches. 
As illustrated in Fig. 13, no such effects were observed. 
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Fig. 13: Correlation matrix across the constant CD4 control samples included 
with each batch as technical replicates. Three RNA preparations were used over 
the course of the program (batches numbered here 1-10, 17-31, 32-34). 
Although there are subtle differences between the RNA samples themselves, no 
individual  batch particularly stands out. Correlation coefficients between the 
same RNA samples in different batches ranged from .978 to .998, which 
compares favorably to inter-population comparisons where correlation 
coefficient range down to 0.65. 
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Fig. 13: Thresholds for positive expression in microarray 
profiles. The distribution of expression values was decomposed 
into the sum of Gaussian distributions. The probabilities of true 
expression was computed from the negative (blue) distribution. 

 
 

IV. Interpreting microarray expression values in ImmGen microarray data 

An important outcome of expression profiling is to determine whether a gene is actually expressed, or 
not, in a given cell-type. The question is not as trivial as it sounds, because it is difficult to determine a 
clear boundary between true expression vs background signals on the microarray; similarly, for RNA-
seq, whether rare reads in deep RNA-seq data represent true activity or simple transcriptional 
background noise. For genes with signals in the borderline or background range, the answer is 
probabilistic. 

For the ImmGen microarray data, the post-normalization expression values range from approximately 
10 to 20,000 (presented in a linear scale, considered more intuitively significant to experimental 
biologists). Within this range, thresholds for likelihood of true gene expression were determined from 
the distribution of values across the microarrays. Because the ST1.0 arrays do not include reliable 
negative controls, an empirical Gaussian mixture model was used to evaluate probabilistic thresholds of 
expression. The expression histograms can be decomposed into two main Gaussian distributions (and 
further into a more finely-tuned set of four Gaussian distributions) with the gmdistribution.fit function in 
MATLAB (Fig. 13). It was assumed that the low distribution (blue line) corresponds to background 
noise, and the high distributions (red and yellow) correspond to true signal. From these, conservative 

probabilities of expression were 
calculated on the basis of the low 
distribution (>120 is a 95% or greater 
probability of true expression), and 
conversely the probability that a gene is 
silent was deduced from the high 
distribution (<47 is a 95% or greater 
probability of a silent gene). In the 50 to 
120 range, there are intermediate 
probabilities that a gene is truly 
expressed (50% probability at the 
intersection point, between 80 and 90 
for most samples. 

These empirical determinations were 
supported by an analysis of the same 
RNA samples run on four different 

microarray platforms, some of which included true negative controls1. Similarly, detection thresholds 
from deep RNA-seq corresponded reasonably well to these determinations (the threshold value of 1 
FPKM corresponded to ~90 on the microarray – see Fig. 5 above –  showing that the 120 value for 
actual expression is conservative). 

While these values apply to the majority of genes, there may be departure for individual genes. For 
instance, one can observe consistent, and biologically plausible, signals with a clear population-specific 
pattern in the 20-40 range.  
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In addition, these thresholds need to be adapted for some datasets of borderline quality, for which the 
primary mode of the low distribution were artificially raised by the normalization process (see II.1 
above). Thus, the ImmGen data QC tables list the threshold for 95% probability of expression, when 
they depart from the value of 120 that is applied to most datasets. 
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