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The Supplementary Information contains the plots illustrating the features of the H1 generators for each analyzed

dataset.

I. RESULTS FOR WEIGHT RANK CLIQUE FILTRATION

We recall that, given a network G on N nodes, we consider the weight clique rank filtration on G. Let T be the

length of the filtration, {gi} the set of generators of the i−th persistence homology module of the filtration and Ngi
the cardinality of {gi}. For every generator gi, the index pgi is its persistence interval, the index λgi is its length and

βgi is its birth index. For brevity, H1 generators will be denoted by g rather than g1.

There is a conceptual difference in interpreting H1 for the persistent homology of data with the Rips-Vietoris filtration

and H1 for the persistent homology of weighted networks with the weight rank clique filtration. While in the first case

persistent generators are relevant and considered features of the data, short cycles are more interesting for networks.

This is because random networks, or randomisations of real networks, display one-dimensional persistent generators

at all scales, while short lived generators testify the presence of local organisation properties on different scales.

As stated in the main text, the complex networks we considered fall in two main groups.

Networks in group I display clear departures from the null counterparts, while class II networks show homological

features that are much closer to the randomized versions. We collected the complete information about the indices

pg, λg and βg for persistent H1 generators within a series of tableaux (Figures S.1 to S.15). In every figure, panel

a) represents the distribution of persistence pg, panel b) the distribution of length λg and panel c) the distribution

of birth index βg. These quantities are studied for the homology generators in the real world network(red circles),

after weight reshuffling of the network(blue squares) and in the network randomisation(green triangles). Panel d) is

the persistence diagram of the network under study, panel e) is the persistence diagram of its weight reshuffled null

model and panel f) is the persistence diagram of the random null model.

From the perspective of persistence diagrams, class I presents a rich structure of nested cycles covering all scales, as

opposed to the weight reshuffled null model and random null model where generators are born uniformly along the

filtration and tend to be very persistent, producing largely hollow network instances.

The degree and weight sequences are preserved in the randomisations and therefore cannot account for the differences

in the homology. Another possibility to explain the different behaviour of the two classes could be the presence of

degree-degree or weight-degree correlations in class I. However, networks in the two classes do not show consistent

patterns of assortativity: for example, class I includes the gene network (assortative) and the airport networks

(disassortative), while class II includes the assortative co-authorship networks and the disassortative Twitter data.

Also weight-degree correlations do not appear to be decisive: for example, the RGGs generated with random edge

weights did not show significant differences from those generated with edge weights correlated positively to the degrees

of the end nodes (see Figs. S.14 and S.15).
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[14] Barthélemy, M., Spatial Networks Phys. Rep. 499, 1 (2011).

[15] Penrose, M., Random Geometric Graphs Oxford University Press, Oxford, UK, (2003).

[16] Palla, G. et al. Directed network modules. New J. Phys. 9, (2007)

(a) (b) (c)

(d) (e) (f)

FIG. S.1: Summary of H1 persistent homology results for the human gene interaction network 2

(Class I).
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FIG. S.2: Summary of H1 persistent homology results for online forum network of [9] (Class I).

(a) (b) (c)
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FIG. S.3: Summary of H1 persistent homology results for the US airways passenger network for 2000

(Class I).
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FIG. S.4: Summary of H1 persistent homology results for the US airways passenger network for 2002

(Class I).

(a) (b) (c)
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FIG. S.5: Summary of H1 persistent homology results for the US airways passenger network for 2006

(Class I).
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FIG. S.6: Summary of H1 persistent homology results for the US airways passenger network for

2011(Class I).

(a) (b) (c)

(d) (e) (f)

FIG. S.7: Summary of H1 persistent homology results for the online messages network of [8] (Class I).
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FIG. S.8: Summary of H1 persistent homology results for the day 1 face-to-face contact duration

network of children of [12] (Class II).
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FIG. S.9: Summary of H1 persistent homology results for the day 2 face-to-face contact duration

network of children of [12] (Class II)
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FIG. S.10: Summary of H1 persistent homology results for the neural network of the C. elegans (Class

II).

(a) (b) (c)

(d) (e) (f)

FIG. S.11: Summary of H1 persistent homology results for a network of mentions and retweets of a

part of the Twitter network (Class II).
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FIG. S.12: Summary of H1 persistent homology results for the Hep-th arxiv.....(Class II)

(a) (b) (c)

(d) (e) (f)

FIG. S.13: Summary of H1 persistent homology results for the cond-mat (Class II).
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(d) (e) (f)

FIG. S.14: Summary of H1 persistent homology results for the Random Geometric Graph model with

linear weight-degree correlations (Class I). The graph has N = 600 nodes and a linking distance d = 0.01.

The weight of a link between nodes i and j was set according to ωij ∼ (kikj)
θX, where θ = 1 and X is a uniform

random variable in (0, 1).
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FIG. S.15: Summary of H1 persistent homology results for the Random Geometric Graph model with

linear weight-degree correlations (Class I). The graph has N = 600 nodes and a linking distance d = 0.01.

The weight of a link between nodes i and j was set with random uniform weights .

11


	Supplementary Information for ''Topological strata of weighted complex networks''
	Results for weight rank clique filtration
	References


