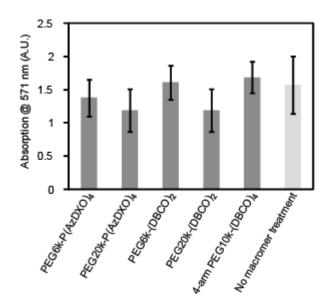

Supporting Information

© Copyright Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2011


Cytocompatible Poly(ethylene glycol)-co-polycarbonate Hydrogels Cross-Linked by Copper-Free, Strain-Promoted Click Chemistry

Jianwen Xu, Tera M. Filion, Fioleda Prifti, and Jie Song*[a]

asia_201100411_sm_miscellaneous_information.pdf

Figure S1. ¹³C NMR of 4-arm-PEG10k-(DBCO)₄ showing the disappearance of the characteristic peak for -CH₂OH end-groups of 4-arm-PEG10k from 61.4 ppm (red arrow), supporting complete esterification of -CH₂OH by DBCO-acid.

Figure S2. MTT viability assay of BMSC cells cultured on 96-well tissue culture plates in the presence of PEG-P(AzDXO)_{2m} and PEG-(DBCO)_x macromers showing cell viability at 48 h comparable to those cultured in the absence of any macromers. For cell seeding, BMSC cell suspension (10^6 cells/mL, $50 \,\mu$ L) in expansion media (α-MEM without ascorbic acid, 20% FBS) containing 0 or 10 w/v% macromers was added to each well of the 96-well plate before an extra $200 \,\mu$ L of expansion media was added. No statistically significant difference was observed between any of the macromer-treated cultures and the no-macromer control culture (p > 0.05; student t-test).