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SUPPLEMENTAL DATA 
 

 
 
Figure S1. Recurrent rearrangements alter known and putative prostate cancer genes, Related 
to Figure 1. 
(A) Schematic of CRKL-MAPK1 and NRF1-BRAF fusions detected by WGS, along with validation 
by FISH assay.  
(B) Protein-Protein Interaction (PPI) data were analyzed to nominate rearrangements of potential 
biological consequence. The centrality in a PPI network (Szklarczyk et al., 2011) was assessed 
for protein products of genes that were rearranged in more than one sample (total 397). X- and Y-
axes measure two indexes of centrality, where larger values indicate more central network 
positions. Circle color and size are proportional to the frequency of gene rearrangement across 
the tumor cohort. Genes scoring in the 95

th
 percentile are depicted as filled circles. The two 

panels on the right show the centrality of recurrently rearranged genes (depicted as red circles in 
the bottom plot) compared to the entire PPI dataset. 
(C) Disruptive genomic rearrangement of JAK1, JAK2 and GSK3B. Dotted lines show intragenic 
breakpoints and corresponding text indicates the locus to which the breakpoint is fused (IGR; 
inter-genic region). Rearrangements depicted above the gene diagrams occurred in a sense-
preserving orientation; rearrangements below gene diagrams occurred in an anti-sense 
orientation. Right, genomic rearrangements were validated by FISH.  
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Figure S2. Signatures of coordinately generated rearrangement chains, Related to Figure 2. 
(A) Percentage of DNA deletions bounded by fusion breakpoints that were uniquely identified as 
deletion bridges (blue) or simple deletions (white) in prostate tumors with ten or more deletions in 
either category.  
(B) Probabilistic model of independent rearrangements across the genome. The expected 
distribution of independent DNA breaks in a given tumor (ρ) is estimated by counting the number 
of tumors with one or more rearrangements within 1Mb tiling windows across the genome. ρ is 
used to calculate the value of μlocal used by ChainFinder in the null model of independent 
breakpoints. 
(C) Quantile-quantile (Q-Q) plot comparing the distribution of PXY values (the adjacency 
probabilities for independent breakpoints) for observed, simulated and scrambled 
rearrangements. 
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Figure S3. ChainFinder analysis of cancer genomes, Related to Figure 3.  
(A) ChainFinder creates a graph representation of somatic rearrangement breakpoints and 
corresponding deletions (see Supplemental Experimental Procedures for an extended 
explanation). (1) Breakpoints of somatic fusions are represented as nodes connected by edges. 
(2) The adjacency probability (PXY) is calculated for pairs of neighboring breakpoints based on 
their reference genome distance (L) and the local rate of rearrangements (μlocal). (3) Breakpoints 
at either boundary of a deletion bridge are joined by edges. (4) The graph is searched for cycles 
connecting breakpoints that are unlikely to have arisen independently, based on PXY values of 
corresponding intervals. (5) The final graph contains sets of rearrangements and associated 
deletions that are unlikely to have occurred independently.  
(B) For a hypothetical cycle involving three rearrangements, the independent breakpoint model 
constitutes all scenarios by which any rearrangement could have arisen independently of others 
in the cycle (see Supplemental Experimental Procedures for an extended explanation). 
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Figure S3, continued. (C) Circos plots of rearrangements color-coded by chain for 57 prostate 
tumors and 59 previously sequenced cancer genomes (please see Table S5B for references). 
Rearrangements in gray were not assigned to a chain. Copy number alteration is shown in blue 
(deletion) and red (amplification) in the inner ring of each plot.  
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Figure S4. Rearrangement profiles of prostate tumor genomes, Related to Figure 4.  
(A) Chromoplexy arises in physically interacting chromatin. Chains are enriched for 
rearrangements that fuse portions of the genome in close physical proximity as determined by Hi-
C analysis of the RWPE-1 prostate epithelial cell line (Rickman et al., 2012). Further details are 
provided in the Supplemental Experimental Procedures. 
(B) Enrichment of rearrangement breakpoints near to and distant from various genomic features, 
including ChIP-seq peaks from ERG

+
 VCaP prostate cancer cells (Yu et al., 2010). Color hue 

reflects the degree of enrichment (red) or depletion (blue) and box area reflects statistical 
significance. “Near” and “Far” correspond to within 100kb and further than 500kb, respectively. 
The number of rearrangements for each tumor is depicted in the gray columns (see Supplemental 
Experimental Procedures). 
(C) Recurrent somatic copy number alterations (SCNAs) across an extended panel of 199 
prostate tumors grouped by CHD1 deletion status. For comparison, the same samples are also 
grouped by TP53 deletion status. Median, middle quartiles, and range are indicated. 
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Figure S5. PCR validation of chained DNA rearrangements, Related to Figure 5. 
PCR reactions were run on tumor and normal DNA to amplify across the junctions of 76 somatic 
fusions. Rearrangements are numbered as in Table S3C. Please see Table S3C for a list of 
additional rearrangements that were validated by PCR and deep sequencing on the MiSeq 
platform.  
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Figure S6. Estimation of clonality and stromal DNA admixture, Related to Figure 6. 
(A) Apparent DNA admixture computed from WGS and MiSeq deep-sequencing data for 18 
somatically deleted genes in 7 samples. Error bars for WGS estimations are computed according 
to Table S6A. Clonality calls on WGS data were made with a minimum of 20 informative 
hemizygous SNPs covered to an average depth of 20x or greater. MiSeq calls are based on 4 
SNPs with average local coverage of >65,000x. The contingency table (bottom-right) shows the 
agreement for clonality and sub-clonality calls between MiSeq and WGS based data (Cochran 
test, p-value=1). 
(B) Clonal status of deletions at 14 loci inferred across 49 prostate cancers. The central panel 
denotes the clonal status of a gene lesion in a sample. Empty dark gray rectangles indicate either 
that the gene was not deleted or that there were insufficient informative SNPs to determine 
clonality status. White circles indicate a 100% clonal deletion. Colored circles indicate sub-clonal 
deletions, where darker color indicates a more subclonal deletion. Top rows report Gleason 
scores, ranging from 6 (light blue) to 9 (violet), and global stromal DNA admixture, where darker 
color signifies more admixture. Green bars summarize lesion clonality on a per-sample and per-
gene basis. Dark and light green denote the proportion of clonal and sub-clonal deletions, 
respectively.  
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Figure S7. Chromoplexy continues during outgrowth of tumor sub-clones and generates multiple 
rearrangements in closed chains at once, Related to Figure 7. 
(A) Three examples of subclonal chains identified by clonality analysis of deletion bridges. Allelic 
fraction distributions of heterozygous SNPs within the deleted segments are indicated. On the 
right, a clonal deletion bridge from the same sample is shown for comparison. 
(B) Closed chains of non-independent rearrangements could arise from (1) a series of balanced 
translocations over multiple cell generations (the “sequential-dependent model”) or (2) concerted 
rearrangements within one cell cycle (the “simultaneous model”). 
(C) For closed chains of rearrangements, bars indicate the median number of sequential 
balanced translocations required to close a chain under the sequential-dependent model 
(assuming translocations occur randomly between breakpoints within the chain). Average values 
from 10,000 simulations per chain size are shown in blue. Red bars indicate the number of 
rearrangements that disrupt a previously formed fusion junction.  
(D) For 121 observed closed chains, the values from (C) and genomic distances between chain 
breakpoints were used to calculate the local rate of rearrangements required to close the chain 
under the sequential-dependent model. This density is compared to the maximum density of 
rearrangements observed in the tumor containing the chain (assessed in 10kb windows genome-
wide).  
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Table S1. Clinical characteristics of genome-sequenced prostate tumors, Related to Figure 1. 
 
Table S2. Sequencing metrics of 57 prostate cancer whole genomes, Related to Figure 1. 
 
Table S3. Somatic DNA alterations in 57 prostate cancers, Related to Figure 1. 
(A) Somatic point mutations and small insertions/deletions in protein-coding genes identified by 
WGS. 
(B) Segmented copy number data for the tumor cohort from Affymetrix SNP 6.0 arrays (seg 
format). 
(C) Somatic genomic rearrangements identified by WGS. 
 
Table S4. Outlier expression of rearranged genes, Related to Figure 1. 
For genes scoring above the 85

th
 percentile in the PPI centrality analysis shown in Figure S1, 

expression was assessed from transcriptome sequencing data. Median expression of the gene in 
all samples is listed alongside the expression percentile in sample(s) with rearrangement of the 
gene. Fields are highlighted where samples with disruption of the gene show outlier expression in 
the top or bottom tenth percentile of all other tumors. Empty fields denote genes where 
transcriptome data were not obtained from samples with rearrangement of the gene. 
 
Table S5. Summary of rearrangement chains, Related to Figure 3. 
(A) Chains of co-generated somatic rearrangements and deletions detected by ChainFinder.  
(B) Summary of chromoplexy in prostate cancer, other tumor types and simulated or scrambled 
tumor genomes. 
(C) Known and putative prostate cancer genes dysregulated by chromoplexy. Genes were 
chosen from a list of potential tumor suppressor genes from the KEGG database (Kanehisa et al., 
2012) (“KEGG”) or were curated from published literature (“Additional”). 

 
Table S6. Clonality analysis of prostate tumor genome alterations, Related to Figure 6. 
(A) Uncertainty in estimates of apparent DNA admixture. For a somatic deletion with a given 
number of informative heterozygous SNPs with a given mean sequence coverage, the table 
reports the uncertainty in the estimate of the apparent DNA admixture (adm). Estimations are 
created by randomly sampling 1,800 simulations created using various combinations of mean 
coverage, SNP number and true DNA admixture. The uncertainty is the mean difference between 
the computed versus the true adm values. 
(B) Estimation of deletion clonality. For each sample and each deleted gene included in the study, 
the estimated level of deletion clonality is listed with the range of possible clonality values 
computed according to the uncertainty table in (A). 
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SUPPLEMENTAL EXPERIMENTAL PROCEDURES 
 
Description of the Tumor Cohort 

Prostate cancers analyzed in this study originated from two cohorts: Weill Cornell Medical 
College (WCMC; New York, NY) and Uropath Pty Ltd. (Perth, Australia), a provider of banked 
urological tissues. All prostate cancer samples were collected under an Institutional Review 
Board-approved protocol with the informed consent of patient donors. Sixteen tumors were 
characterized by exome-sequencing in a previous study (Table S1) (Barbieri et al., 2012). 
Previous analyses of SNP data from these cohorts indicated that patients were primarily of 
Caucasian ancestry (Barbieri et al., 2012). Primary adenocarcinomas were removed prior to any 
additional treatment for prostate cancer, including radiation therapy, brachytherapy or hormone 
ablation therapy.  

Primary adenocarcinomas from the WCMC cohort were collected from patients 

undergoing radical prostatectomy by one surgeon (A. Tewari; under IRB number: 0407007351) 
for clinically localized prostate cancer at the Institute of Prostate Cancer and Lefrak Center of 
Robotic Surgery, Weill Cornell Medical College and New York Presbyterian Hospital (New York, 
NY). This cohort included neuroendocrine prostate cancer (NEPC) cases, which were obtained 
under an IRB approved protocol from lung (PR-4240) and abdominal wall soft tissue (PR-7520) 
metastases by H. Beltran. Patient-matched normal DNA was obtained from whole blood samples 
for this cohort.  

Tumors from the Uropath cohort were obtained from men undergoing radical 
prostatectomy for clinically localized prostate cancer across multiple medical centers in Western 
Australia. Radical prostatectomies were performed by one of 30 clinicians between 2000 and 
2010. Samples were stored at -84°C. Paired normal DNA was obtained from benign prostate 
tissue. To extract normal DNA, we identified a frozen tissue block with no histological evidence of 
neoplasia in order to minimize the possibility of contamination from tumor DNA. 

In both cohorts, Hematoxylin and Eosin (H&E)-stained tissue sections were reviewed by 
M. Rubin and K. Park to verify Gleason score and to determine the percentage of Gleason 
pattern 4 and 5 histology at the site selected for DNA extraction. NEPC samples were reviewed 
by the study pathologists and confirmed as neuroendocrine carcinomas of prostatic origin based 
on clinical history and/or presence of ERG fusion (PR-7520). Immuno-histochemistry was 
negative for PSA and positive for the neuroendocrine marker synaptophysin in both cases. 
 
High-density SNP Array Analysis 

Genomic DNA from tumor samples was profiled with Affymetrix Genome-Wide Human 
SNP Array 6.0 (Affymetrix, Inc.) according to the manufacturer’s protocols. The DNA was 
digested with NspI and StyI enzymes (New England Biolabs), ligated to the respective Affymetrix 
adapters using T4 DNA ligase (New England Biolabs), amplified (Clontech), purified using 
magnetic beads (Agencourt), labeled, fragmented, and hybridized to the arrays. Following 
hybridization, the arrays were washed and stained with streptavidin-phycoerythrin (Invitrogen). 
After array scanning, data preprocessing was performed using Affymetrix Power Tools. Quality 
control, data integrity, segmentation and copy number analysis were performed as previously 
described (Demichelis et al., 2009), except that tumor copy number data were compared to a 
reference model built using a set of peripheral blood cell DNA samples. Regions of copy deletion 
and amplification were defined with a log2 ratio cutoff of <-0.1 and > 0.1, respectively.  
 
Sequencing Data Generation 
 
WGS Library Construction 

Libraries were prepared as described previously (Fisher et al., 2011) with slight 
modifications. First, the genomic DNA input into shearing was reduced from 3µg to 100ng in 50µL 
of solution. In addition, for adapter ligation, Illumina paired-end adapters were replaced with 
palindromic forked adapters with unique 8 base index sequences embedded within the adapter. 
Size selection was then performed using Sage Bioscience’s Pippin Prep, with a target insert size 
of either 340bp or 370bp +/- 10%.  
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Following sample preparation, libraries were quantified using quantitative PCR (KAPA 
biosystems) with probes specific to the ends of the adapters. This assay was automated using 
Agilent’s Bravo liquid handling platform. Based on qPCR quantification, libraries were normalized 
to 2nM and then denatured with 0.1 N NaOH using Perkin-Elmer’s MiniJanus liquid handling 
platform.  
 
RNA-Seq Library Construction 

RNA was isolated using a Dynabeads® mRNA Purifcation Kit (Life Technologies). Two 
rounds of poly-A selection (with bead regeneration) were performed to achieve rRNA 
contamination of less than 10%, as assessed by the Bioanalyzer mRNA Pico program (Agilent). 
Eluate was treated with DNase (TURBO DNA-free™ kit, Ambion) at 37°C for 30 minutes then 
immediately cleaned using RNAClean XP beads (Agencourt). RNA was fragmented in 
Fragmentation Buffer (Affymetrix, 900371) at 80˚C for 4 minutes. First- and second-strand cDNA 
synthesis were performed with SuperScript Double-Stranded cDNA Synthesis Kit (Life 
Technology). Library construction proceeded as described previously (Fisher et al., 2011), except 
that SPRI beads were used in the end-repair cleanup and standard paired-end adapters were 
replaced with barcoded adapters each containing a unique 8-base index sequence. After adapter 
ligation, two sequential cleanups were performed to remove adapter dimers, followed by 8 cycles 
of cDNA PCR amplification and SPRI cleanup. Before sequencing, samples were pooled and 
normalized according to qPCR results.      
 
Cluster Amplification and Sequencing 

Cluster amplification of denatured templates was performed according to the 
manufacturer’s protocol (Illumina) using HiSeq v3 cluster chemistry and flowcells. Flowcells were 
sequenced with 101-bp paired end reads on a HiSeq 2000 using HiSeq v3 Sequencing-by-
Synthesis Kits and analyzed using RTA v.1.12.4.2.  
 
Genome Sequence Analysis 
 
Sequencing Data Management and Processing 

A BAM file was generated for each sample from Illumina sequence reads using the 
Picard pipeline (http://picard.sourceforge.net/). Reads were mapped to the NCBI Human 
Reference Genome GRCh37 (hg19) with the Burrows-Wheeler Aligner (BWA) (http://bio-
bwa.sourceforge.net). The cancer genome analysis pipeline known as Firehose (Principal author 
D. Voet) was used to manage and coordinate analysis of WGS data. Firehose submits input files 
and parameters to GenePattern (DePristo et al., 2011), which executes a series of analyses to 
verify data quality and detect somatic alterations by comparing tumor and normal sequences.  
 
Quality Control 
 We employed several quality control modules to monitor for contamination or potential 
sample mix-ups. To ensure that tumor- and normal-DNA were properly matched for a given 
individual and free of contaminating human sequences, we generated SNP fingerprints from 24 
highly polymorphic sites for each sequencing lane. Lanes with outlier fingerprint genotypes for a 
given individual were discarded. In addition, we used the ContEst algorithm (Cibulskis et al., 
2011) to analyze homozygous non-reference SNPs to estimate levels of contamination with 
foreign human DNA, and required that samples demonstrate >95% concordance. 
 Normal DNA sequences were assessed for admixture with cancer DNA by examining 
copy number profile estimates based on sequence coverage in 100kb bins across the genome. 
Three samples (PR-07-3258, PR-09-3983 and P05-2709) demonstrated low-level contamination 
with tumor DNA, based on similar patterns of DNA gains and losses between tumor and normal in 
a pair. In these cases, the histologically benign prostate tissue used as a source of normal DNA 
likely contained neoplastic or pre-neoplastic cells. The detection of somatic alterations in these 
samples was therefore limited. We specifically analyzed discarded rearrangement calls from 
these samples for prostate cancer-associated fusions, and identified cases in which the 
TMPRSS2-ERG fusion was filtered out due to presence in normal (see below).  
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Detection of Chromosomal Rearrangements 
Detection of somatic rearrangements was performed using the dRanger algorithm 

(Berger, 2011) to identify sequence reads from paired ends that map to the reference genome 
with unexpected orientations or intervals between read pairs. Candidate rearrangements were 
identified from clusters of such reads. They were then assigned a score by multiplying the 
number of chimeric reads supporting the fusion by a quality multiplier between 0 and 1. The 
quality multiplier takes into account the following factors: (1) the fraction of nearby reads with a 
mapping quality of zero; (2) the number and diversity of other discordant pairs in the vicinity of the 
breakpoints; and (3) the standard deviation of the starting positions of the supporting read pairs. 
Rearrangements with score of 4 or greater were classified as high-confidence. Rearrangements 
were categorized as deletions, inversions, interchromosomal translocations or tandem 
duplications based on the locations and strand directions of reads at fusion breakpoints.  

In three cases, the TMPRSS2-ERG fusion was detected but filtered out, either due to low 
levels of tumor contamination in the adjacent prostate tissue used as a normal comparator (PR-
09-3983, P05-2709), or to an abundance of breakpoints at the locus that resulted in a low quality 
multiplier (PR-STID0000000415). The TMRPSS2-ERG fusion was confirmed by fluorescence in 
situ hybridization (FISH) in these and all other fusion-positive cases.  

Some loci that were rearranged in the context of a chain harbored many breakpoints that 
decreased the rearrangement quality score and caused the rearrangement to be rejected, despite 
support from multiple tumor reads and the absence of the rearrangement in normal DNA. To 
improve our ability to detect chains in these situations, we adjusted the parameters of dRanger so 
that rearrangements were considered if they demonstrate five supporting reads in tumor DNA, no 
reads in the panel of normal genomes and a score of 1 or greater. Rearrangements falling into 
this category were retained in the final dataset only if they were assigned to a chain.  
 Breakpoint fusion junctions were mapped to base-pair resolution where possible using 
the BreakPointer algorithm (Drier et al., 2012). BreakPointer searches for read pairs where one 
read maps near a breakpoint and the pair mate partially overlaps with the fusion junction, or fails 
to align anywhere. These unmapped reads are subjected to a modified Smith-Waterman 
alignment procedure with the ability to jump between the two reference sequences at the most 
fitting point. BreakPointer mapped the breakpoints to base pair resolution in 94% of the 5596 
high-confidence rearrangements. In these cases, sequence homology at fusion junctions and any 
foreign sequence insertions were annotated. 

Rearrangements were annotated with transcript information from the UCSC Genome 
Browserʼ s UCSC Genes track (Table S3C) (Fujita et al., 2011) and illustrated using Circos 
(http://mkweb.bcgsc.ca/circos)  
 
Identification of Somatic Single Nucleotide Variants (SSNVs) 

We used the MuTect algorithm from the Broad Institute Genome Analysis Toolkit (GATK) 
to identify SSNVs (Cibulsksis K. et al., in preparation; https:// 
confluence.broadinstitute.org/display/CGATools/MuTectCibulskis et al., 2013; 
www.broadinstitute.org/cancer/cga). As previously described (Berger et al., 2011; Stransky et al., 
2011), MuTect identifies candidate SSNVs by performing a statistical analysis of the bases and 
their qualities in the tumor and normal BAMs at the genomic locus under examination. Base-pairs 
were required to be covered by at least 14 reads in the tumor and 8 in the normal for mutation 
detection. 
 MuTect first filters out reads with low quality scores or excessive mismatches. A 
statistical analysis is then performed to identify somatic mutations using Bayesian classifiers for 
the tumor and normal sequences at a given locus: 
  

           (
 (                       |                

 (                       |                  
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Thresholds were chosen for each statistic to achieve a sufficiently low false positive rate. Several 
post-processing filters are applied to remove artifactual calls. For example, mutations are 
excluded that appear solely at the 5' or 3' end of reads or that are identified in panels of genomes 
from non-cancerous tissue. The accuracy of MuTect has been estimated to be greater than 95% 
by orthogonal validation of mutations in previous sequencing studies (Barbieri et al., 2012; 
Stransky et al., 2011). Mutations in known cancer-associated genes were reviewed manually 
using Integrative Genomics Viewer (IGV) (Robinson et al., 2011).  
 
Local Realignment and Detection of Indels 

To improve detection of small insertions and deletions (indels), reads in tumor and paired 
normal were jointly realigned at genomic locations harboring putative indels by the local 
realignment module in the GATK (DePristo et al., 2011). Putative indels were then considered at 
sites that were well covered in tumor and normal where the indel-containing allele was supported 
by 8 or more reads or 30% of all reads from the locus. Next, these indel calls were filtered based 
on local alignment statistics around the putative event, including the average number of additional 
mismatches per indel-supporting read, average mismatch rate and base quality in a small window 
around the indel (The Cancer Genome Atlas Research Network, 2011).  
 
Mutation Annotation 

Point mutations and indels were annotated with information about relevant genes, 
transcripts, proteins and other features using publicly available databases. A set of reference 
transcripts was compiled for annotation from the UCSC Genome Browserʼ s UCSC Genes track 
as provided in the TCGA General Annotation Files (GAF) hg19 June 2011 bundle (https://tcga-
data.nci.nih.gov/docs/GAF/). Variants were also annotated using the following resources: dbSNP 
build 134 (Sherry et al., 2001), UCSC Genome Browserʼ s ORegAnno track (Griffith et al., 2008), 
UniProt release 2011_09 (Consortium, 2011) and COSMIC v55 (Forbes et al., 2011).  
 
Validation of Somatic Mutations and Rearrangements 
 
Mutation Validation from Transcriptome Sequencing 

We assessed 818 somatic point mutations covering annotated transcripts in RNA-Seq 
data from 20 tumors profiled by transcriptome sequencing (Table S3A). Of the mutated sites, 92 
were covered by 40 or more RNA-Seq reads and present in WGS reads at an allele fraction of 
0.2 or greater. Of these mutations, 84 (91%) showed at least two reads supporting the alternate 
allele.  
 
Validation of Somatic Rearrangements 

Rearrangements were validated by two approaches. We assessed a set of 73 
rearrangements, enriched for events affecting cancer genes, by PCR and deep sequencing on a 
MiSeq instrument (Table S3C). Reads from tumor and normal DNA were aligned to a custom 
genome that contained the hg19 reference genome along with sequences of all predicted fusion 
junctions across samples. Rearrangements were classified as somatic if tumor, but not normal 
alignments, showed multiple high-quaity reads spanning the predicted fusion junction.  
 In addition, we selected 76 chromoplexy-associated rearrangements for validation by 
PCR alone (Figure S5, Table S3C). Primers were designed to amplify approximately 200bp 
containing the predicted fusion junction. Rearrangements were annotated as somatic if a band of 
the predicted size was amplified from tumor DNA but not from normal DNA. 
 
Fluorescence in Situ Hybridization Validation of Rearrangements 

ETS rearrangement was assessed using break-apart assays for ERG and ETV1 as 
described previously (Berger et al., 2011). To assess genomic deletion, gene fusion and 
disruptive translocations, we used locus-specific dual-color FISH assays following a previously 
described approach (Berger et al., 2011; Perner et al., 2006). At least 50 nuclei were evaluated 
per tissue section using a fluorescence microscope (Olympus BX51; Olympus Optical, Tokyo, 
Japan). The following probes were used for FISH assays: 
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Locus     BAC #  
CHD1     RP11-58M12 
CHD1 Reference (5p13.1) RP11-429D13 
  
GSK3B 3'   RP11-59M4 
GSK3B 5'   RP11-113H22 
   
JAK1 3'     RP11-1061K17 
JAK1 5'     RP11-76O023 
  
JAK2 3'     RP11-274A3 
JAK2 5'     RP11-259N10 
  
CRKL 3'   RP11-76I4 
CRKL 5'   RP11-1152E2 
  
MAPK1 3'   RP11-317J15 
MAPK1 5'   RP11-179H3 
  
PTEN     CTD-2047N14 
PTEN Reference (10q25) RP11-431P18 
  
FOXP1     RP11-410B2 
FOXP1 Reference (3p11) RP11-91M15 
  
BRAF 3'   RP11-248P7 
BRAF 5'   RP11-248O23 
 
Protein-Protein Interaction (PPI) Analysis of Somatically Rearranged Genes  
 
 To identify gene rearrangements of potential biological consequence in Figure S1, we 
searched for recurrently rearranged genes whose protein products occupy central positions in 
interaction networks. To assess protein-protein interaction (PPI) network centrality, we 
considered the product of two measures of degree centrality and betweenness centrality:  
 

1. Degree centrality: Given a protein p and a PPI network N, the index Degree(p,N) 
measures the number of interactions incident upon p. The index is normalized by dividing 
D(p,N) with the maximum index in the network. 

 
2. Betweenness centrality: Given a protein p and a PPI network N, the index 

Betweenness(p,N) measures the number of shortest paths from all proteins to all others 
that pass through protein p. The index is normalized by dividing Betweenness(p,N) with 
the maximum index in the network. 

 
We assessed centrality with the STRING database (Szklarczyk et al., 2011), and considered two 
other databases for independent support (Human Protein Reference Database (HPRD) (Prasad 
et al., 2009) and I2D (Brown and Jurisica, 2007)). The top quartile of centrality indexes in the 
entire network of 18,583 proteins was significantly enriched with protein products of the 397 
genes with rearrangements in more than one sample (p = 0.002). 
 For rearranged genes that scored highly in the centrality analysis, we assessed gene 
expression levels in the subset of transcriptome-sequenced samples using RSEQtools (Habegger 
et al., 2011) (Table S4). To evaluate the effects of the rearrangements on gene transcription, we 
noted genes that were expressed in the bottom or top tenth percentiles in samples harboring 
rearrangement of the locus compared to all other tumors. 

 
Detection of Chained Rearrangements and Deletions 
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Overview of the ChainFinder Algorithm 

ChainFinder analyzes somatic DNA rearrangements from WGS data (e.g., deletions, 
inversions or translocations) and infers whether the rearrangement likely occurred in the context 
of a “chain” with two or more other rearrangements. Chained rearrangements are identified by 
searching for sets of breakpoints that are distributed about the genome in a configuration that 
would be improbable if the rearrangements had occurred independently of one another. The 
ability to detect chains is enhanced by also considering copy number profiles for signatures of 
chained rearrangements. 

ChainFinder is implemented in MATLAB, and formulates the detection of rearrangement 
chains as a graph theory problem, in which breakpoints are treated as nodes that may be inter-
connected by graph edges (Figures 3A and S3A). Edges connect pairs of breakpoints that are 
either (1) somatically fused to each other (2) involved in two distinct rearrangements that are 
unlikely to have arisen independently or (3) at either end of a deletion bridge. An initial graph is 
constructed by searching for sets of breakpoints and associated deletions for which the 
independent model can be rejected after correction for multiple hypothesis testing (see below). 
The initial graph is then refined by considering any alternative valid assignments of breakpoints 
and deletion segments to deletion bridges. In the final graph, breakpoints connected by edges 
correspond to collections of rearrangements that may have arisen concertedly in the context of a 
chain. These steps are described in detail in the following sections and diagramed in Figure S3A. 
 
Assessment of Adjacent Breakpoints 

Each pair of breakpoints joined by a somatic DNA fusion is first connected by an edge on 
the graph (Figure S3A). For each pair of neighboring breakpoints on the reference genome within 
1Mb of each other, the probability of two breakpoints arising independently within the observed 
distance of one another (PXY) is calculated as follows. We assume that the probability of a DNA 
breakage event per nucleotide is uniform near the breakpoint and equal to μlocal. The probability of 
a second event not occurring within a distance L from the reference event (either upstream or 
downstream) is (1-2μlocal)

L
. Therefore, the probability PXY of observing a second breakpoint Y 

within distance L of an index breakpoint X is: 
 
       (          

  
 

The rate μlocal is calculated based on (1) the number of breakpoints per base-pair observed in a 
given tumor (μglobal) and (2) the density of breaks near the rearranged locus across the panel of 
57 prostate tumors (ρ): 
 

μlocal = μglobal ρ 
 
We estimate the breakpoint density ρ as a function of genomic location by dividing the genome 
into 1Mb windows and counting the number of tumors with one or more breaks within a given 
window (Figure S2B). Values of ρ are scaled uniformly such that the sum of μlocal across all 
windows is equal to μglobal. 

For neighboring breakpoint pairs, PXY is considered as a p-value for the hypothesis that 
the two breakpoints arose independently. Pairs of breakpoints are connected by an edge 
(assigned to the same chain) if the corresponding PXY can be rejected with control of the false 
discovery rate at 10

-2
 (Benjamini, 1995). 

 
Assignment of Deletion Bridges 

Next, segmented copy number data are overlaid with breakpoint locations to identify 
rearrangement breakpoints that correspond to deletion events. This step connects breakpoints on 
the graph with edges corresponding to deletion bridges in cases where the breakpoints may have 
originated from the same DNA deletion event.  

Each breakpoint is provisionally paired to a boundary of a deletion segment if the 
breakpoint lies within 8 SNP probes of the boundary (typically a span of several thousand base-
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pairs). Breakpoints at either boundary of a deletion segment are potentially joined by a deletion 
bridge if:  

 
A. The breakpoints on either end of the deletion are not fused to each other; i.e., the 

deletion must correspond to a deletion bridge (involving two rearrangements) rather than 
a “simple deletion” (involving one rearrangement) (Figure 2A). 

B. The sequencing reads supporting the breakpoints at either end of the deleted segment 
must “point towards” the deletion, such that the deleted sequence would lie directly 
downstream of the reads.  

 
Edges are added to the graph to denote potential deletion bridges. In cases where pairs of 
breakpoints cannot be uniquely assigned to a single bridge, multiple interpretations are tested in 
a subsequent step (see Finalization of the Graph, below) 

 
Evaluation of Graph Cycles 

In some cases, PXY is extremely small – for instance, when breakpoints from separate 
fusions map within several hundred base pairs of one another – and the breakpoints clearly did 
not originate independently. However, borderline cases often arise where PXY is not sufficiently 
small to reject the independent model for two breakpoints unequivocally. In such cases, additional 
evidence that rearrangements were generated coordinately can be obtained by considering sets 
of breakpoints whose nodes on the graph are contained within cycles (paths along edges that 
begin and end at the same node). 

Each cycle is evaluated under the independent breakpoint model based on PXY values for 
adjacent breakpoints within the cycle (Figure S3A). Specifically, all possible scenarios are 
considered by which one or more rearrangements within the cycle could have arisen 
independently. For example, three rearrangements involving six breakpoints in a hypothetical 
cycle (Figure S3B) could have arisen by the following (non-mutually exclusive) scenarios, where 
subscripted numbers in parentheses denoted rearrangements that occurred independently: 
 

{H(1)23, H(2)13, H(3)12, H(1)(2)(3)} 
 
This set of scenarios represents the independent model for the cycle, which encompasses all 
alternative possibilities to the breakpoints in the cycle arising coordinately (H123). 

ChainFinder considers the probability of detecting the independently generated 
breakpoints under each scenario within the observed distance of each other. Each scenario in the 
independent model requires that two or more pairs of adjacent breakpoints from separate 
rearrangements arise independently, in order to “split” the cycle into two or more separate events. 
Each such scenario can be expressed in terms of combinations of PXY values from edges within 
the cycle corresponding to adjacent breakpoints (i.e., Pab, Pcd and Pef; Figure S3B) 
 

{(Pab Pcd), (Pab Pef), (Pcd Pef), (Pab Pcd Pef)} 
 
As shown in Figure S3B, all scenarios involving three or more independent events require the co-
occurrence of two or more scenarios involving only two events. Therefore, rejecting all scenarios 
involving only two events is sufficient to reject the independent model overall for the cycle. To 
assess all scenarios involving two independent events, ChainFinder tests the pairwise products of 
all PXY values within a cycle (corresponding to all two-event scenarios) with control of the family-
wise error rate (FWER; (Holm, 1979)) at 10

-2
 across all scenarios. Control of the FWER ensures 

that, if the independent model is rejected for a cycle, there is a 1% chance that one or more of the 
independent rearrangement scenarios for the corresponding cycle were mistakenly rejected. All 
cycles for which the independent model is rejected are linked within a chain.  
 
Finalization of the Graph 

Finally, the graph is refined by considering deletion bridges that could not be uniquely 
assigned. Although a single deletion bridge may exist that connects two breakpoints, frequently 
multiple interpretations are possible due to overlapping regions of deletion from separate alleles 



 18 

or distinct tumor subclones. In these cases, a single choice must be made from a set of mutually 
exclusive possible bridges. Bridges are mutually permissible only if the following conditions are 
met: 
 

1. The bridges do not share the same breakpoints at either deletion segment boundary 
2. If the bridges overlap, the deletion segment in the region of overlap must demonstrate a 

consistently lower copy number than segments outside the region of overlap. 
 
ChainFinder tests permutations of mutually permissible bridges to find the combination 

that incorporates the most breakpoints into deletion bridges, because this solution best reconciles 
the copy number and rearrangement data. If a unique valid combination of bridges exists that 
maximizes the number of breakpoints in deletion bridges, the bridges are accepted and any 
distinct chains that they link are combined. If multiple optimal interpretations exist, only bridges 
that are included in all of these interpretations are kept.  

The graph is finalized by removing any edge between neighboring breakpoints for which 
the independent-generation model could not be rejected. In addition, deletion bridge edges are 
retained in the graph only if the breakpoints on either end of the deletion arose non-independently 
(e.g., within a cycle).  
  
Evaluation of Genes Disrupted in Chains 
 Once chains have been assigned, a list of genes disrupted in each chain is compiled. 
Genes are included if they fall at least partially within a deletion bridge in the chain or within 10kb 
of a copy-neutral rearrangement in the chain. Circos plots are generated in which all 
rearrangements in a given chain are depicted in the same color (e.g., Figure 2B).  
 
Assessment of False-Positive Rate with Simulated Tumor Genomes 
 In order to test the false-positive rate of ChainFinder, we created “scrambled” tumor 
genomes by simulating the independent accumulation of rearrangements based on observed 
data. For each tumor, ten “scrambles” were created that combined rearrangements from other 
tumors. Each scramble contained the same number of rearrangements as the corresponding 
sequenced tumor. Any two rearrangements were combined in a scramble only if they were not 
part of the same chain from the same sequenced tumor. The scrambles served as “true negative” 
cases in which all rearrangements were generated independently, while preserving genome-
position specific influences on breakage and fusion, since the data are drawn from observed 
rearrangements. Copy number profiles were simulated based on observed data as well. 
Segments of copy number alteration were generated that maintained (1) the number of 
breakpoints at the boundaries of potential deletion bridges and (2) the overall ratio of copy 
number gains to losses. The simulated rearrangement and copy number data were profiled with 
ChainFinder, and the proportion of breakpoints assigned to a chain was compared between 
observed and simulated data. 

For each sequenced tumor, we also created ten simulations matched for rearrangement 
number and chromosomal connectivity. The rearrangement breakpoints were further matched to 
observed data with respect to (1) sequence coverage, (2) guanine and cytosine content of local 
sequence, (3) expression levels of nearby genes, (4) replication timing of DNA and (5) reference 
genome distance between breakpoints for intrachromosomal rearrangements (within 5%). 
Coverage was matched within 5x to the coverage near the observed breakpoint. Suitable 
locations for simulated breakpoints were identified by creating bins for the values of parameters 
(2) through (5) for each chromosome, and randomly choosing a location that falls within the same 
bin as the corresponding observed breakpoint. For each feature (e.g., GC content), we created 
bins containing the bottom and top fifth percentiles across the chromosome. We then split the 
middle 90% evenly into three additional evenly spaced bins. Copy number profiles were 
simulated such that breakpoints at edges of deletion segments were preserved. In most cases 
where ChainFinder identified chains within simulated tumors, the simulations were too restrictive, 
so that the only matched location for a set of rearrangements in a chain was near to the location 
where they were observed. 
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Quantification of Gene Expression near Rearrangement Breakpoints 
Expression was quantified in terms of gene-level FPKM (Fragments Per Kilobase of 

transcript per Million mapped reads) values from 16 prostate tumor transcriptomes using 
CuffLinks (Trapnell et al., 2012). The transcription levels near rearrangements were estimated 
from median values of log10

 
(1+FPKM) across the tumor transcriptomes in 10kb windows on 

either side of the breakpoint. Where this window overlapped multiple genes, the largest FPKM 
value was used. For the analysis shown in Figure 4D, the statistical enrichment of chained 
breakpoints near highly expressed DNA in ETS-positive tumors was robust to exclusion of the 
TMPRSS2 and ERG loci from expression level estimates.  
 
Assessment of Nuclear Proximity of Fused Loci from Hi-C Data 

We sought to determine whether breakpoints involved in structural rearrangements are in 
close physical proximity in nuclei in which these breakpoints have not yet occurred. For this, we 
used filtered chromatin interaction data (Hi-C) from experiments performed in prostate epithelial 
cells (RWPE1) stably expressing a GFP reporter (RWPE1-GFP) (Rickman et al., 2012). To 
determine whether a set of breakpoint pairs are in close proximity, we defined a 1Mb window 
centered on each breakpoint and counted the Hi-C reads connecting the two windows for all 
breakpoint pairs. The average Hi-C read counts were determined separately for chained 
rearrangement breakpoints and for breakpoints that were not assigned to a chain for comparison. 
Rearrangements were further subdivided by ETS-status of the tumor in which they were 
observed. 

We then compared the observed average Hi-C count to Hi-C counts that would be 
observed by chance if the breakpoint pairs were randomly distributed on the genome. We 
generated random sets of breakpoints matched to the observed breakpoints for intra-
chromosomal distances, chromosomal distribution and short read mappability. We again defined 
1Mb windows centered in the random breakpoints and counted Hi-C reads connecting each pair 
of simulated breakpoints. We repeated this analysis 1,000 times to generate a null distribution of 
average Hi-C read counts for random breakpoint pairs. To generate a p-value, we counted how 
many of the 1,000 sets of random breakpoints had an average Hi-C read count greater than or 
equal to the average read count for the observed breakpoints. Of note, only intra-chromosomal 
rearrangements were considered for this analysis, as inter-chromosomal breakpoints were 
supported by very few Hi-C reads even when considering large windows centered on the 
breakpoints. 
 
Breakpoint Enrichment Analysis 

Enrichment and depletion of breakpoints was assessed across the genome with respect 
to replication time, guanine/cytosine (GC) content and distance to transcribed genes. Observed 
distributions were compared to randomly generated distributions controlled for chromosome and 
coverage. First, nearby breakpoints (up to 2,500bp away) were consolidated into a single “event.” 
For each event, 100,000 locations (one per iteration) were generated uniformly from all locations 
on the same chromosome having the same coverage. The genome was considered in the 
following bins: low GC (0-36%), medium GC (36%-45%) and high GC (45%-100%). Replication 
time was binned according to late/early ratio (Ryba et al., 2010) at (-∞,-0.8),[-0.8,0), 
[0,0.8),[0.8,∞). Changing the thresholds did not affect the essence of the results, other than losing 
sensitivity for very large or small bins (data not shown). For every bin we counted the number of 
breakpoints for both the observed breakpoints and the random breakpoints. All of these counts 
were used to compute nonparametric p-values (observed rates). Enrichment or depletion was 
determined by picking the lower of the one-sided p-values, and p-values were then corrected for 
multiple hypotheses by the Benjamini-Hochberg FDR procedure (Benjamini, 1995). 

An analogous procedure was used to detect enrichment near ChIP-Seq peaks (Yu et al., 
2010). Here, bins were defined as within 50kb of a peak (“near”) or >100kb from a peak (“far”; 
see Figure S4).  
 
Quantification of Tumor Purity and Subclonality 

Prior to sequencing, estimates of tumor purity and ploidy were derived from Affymetrix 
SNP6.0 data using ABSOLUTE (Carter et al.).  These estimates were used to select high purity 
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samples for whole genome sequencing (median purity 70%; ploidy range 1.84 – 2.21; Table 
S1A).  

Analyses of tumor purity and subclonality from WGS data were performed by exploiting 
individuals’ genotypes at polymorphic loci within somatically altered regions of the genome, using 
considerations related to previously described methods (Carter et al., 2012; Nik-Zainal et al., 
2012; Landau et al., 2013). For each tumor sample included in the study, we estimated stromal 
DNA admixture and lesion clonality using CLONET (CLONality Estimate in Tumors; Prandi D. et 
al., manuscript in preparation). The approach behind CLONET and the MiSeq-based validation 
we performed are outlined hereafter.  

For a tumor sample TS containing a mixture of NTS normal (diploid) cells and TTS tumor 
cells, the percentage of admixed normal cells is:  
 

   (     
   

         

 

 
Based on the above equation, the admixture can be estimated from sequencing reads covering a 
site of hemizygous deletion s as: 
 

    (     
 

 
(   

    
 
(   

 

 
where βs(TS) is the proportion of reads at locus s that originated from normal cells in TS. 

In order to calculate Adm(TS), we first selected informative heterozygous SNPs within 
regions of somatic deletion that were identified from copy number array data. For each 
hemizygous deletion H, we considered the distribution of the allelic fractions (i.e., the fraction of 
reference sequence reads) from selected SNPs within H. Using “particle swarm optimization” 
(Kennedy, 1995) we calculated a composite value βH(TS) for the deleted region that best 
accounted for the observed distribution of allelic fractions at each heterozygous SNP s across the 
region. For every deletion, a value Adm.apparentH(TS) was computed that describes the 
apparent admixture at that locus. Adm.apparentH(TS) reflects both stromal admixture and 
potentially subclonal lesions that increase the apparent level of normal DNA at that locus. For 
each hemizygous somatic deletion H, the values of Adm.apparentH(TS) were grouped if the 
difference between the values could be explained by the estimation error determined by 
simulation-based error estimations. The smallest mean value of Adm.apparentH(TS) across a set 
of grouped deletions was taken as the candidate value of Adm(TS).  
 Estimates of cancer DNA purity by this procedure are listed in Table S1 and compared to 
estimates from the same tumors by ABSOLUTE run on SNP array data. The estimates were 
highly consistent across the samples (R

2
 = 0.99; p < 10

-4
) with the exception of two samples (PR-

STID0000002682 and PR-07-360), where stromal admixture was detected in WGS data but not 
SNP array data. 

We analyzed the clonality of gene deletions based on normalized log2 ratios of tumor and 
normal WGS sequence coverage, after correction for the estimated normal DNA admixture in 
tumor samples. Deletions where Adm and Adm.apparentH differ beyond the error estimation are 
potential sub-clonal lesions. We estimated the percentage of tumor cells that harbor a somatic 
hemizygous deletion H, i.e., the clonality of H, as: 
 

          (     
                (   

     (   
 

 

In the case of a 100% clonal hemizygous somatic deletion H the value of ClonalityH(TS) is 1, as 
Adm.apparentH(TS) equals Adm(TS); otherwise ClonalityH(TS) is less than 1. In the presence of 
high coverage, small variations in ClonalityH(TS) can demonstrate differences in sub-clonality 
along a continuous scale. Here, in order to avoid false positive calls for borderline subclonality, 
we adopted a conservative approach and only considered two classes of deletions: clonal 
(ClonalityH(TS) ≥ 0.8) and subclonal (ClonalityH(TS) < 0.8). After Adm was calculated,we 
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executed a similar procedure to estimate the clonal status of somatic homozygous deletions and 
point mutations.  

The sensitivity of clonality detection depends upon the number of heterozygous SNPs 
within a deletion of interest and the depth of sequence coverage at these SNPs. We evaluated 
the uncertainty in clonality estimates as a function of these parameters by randomly sampling 
1,800 simulations and averaging the difference between the true clonality and computed clonality 
for a given coverage and number of SNPs (Table S6). To ensure robust clonality calls, we 
considered only deletions with 20 or more informative SNPs with average sequence coverage of 
20x (corresponding to a 5.4% estimation error). Table S7 lists the percentage of tumor cells found 
to harbor a specific lesion together with the associated uncertainty range. 
 
Validation of Clonality Estimates 

To assess our ability to estimate apparent DNA admixture from our WGS data, we 
generated independent validation data for a set of 18 aberrant genes with four heterozygous 
SNPs each from seven tumor samples by PCR and deep sequencing (>65,000x coverage). The 
deep coverage provided a precise estimate of the ratio of alleles at SNP sites. Figure S6A 
compares the local apparent DNA admixture for the 18 genes computed using WGS data to the 
estimates computed using deep sequencing data (R

2 
= 0.85, p-value = 3.55x10

-8
). The 

contingency table inset in Figure S6A demonstrates agreement between WGS- and deep 
sequencing-based calls of clonality status (Cochran test, p-value = 1). Importantly, these results 
show that the conservative approach taken in this study to call clonality in two states (clonal or 
sub-clonal) is robust in the presence of poorly defined lesion breakpoints, as in the case of a 
hemizygous deletion of PTEN in sample P08-688 (outlier, apparent DNA admixture ~0.6, 
correctly classified as sub-clonal). 
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