Supporting Information

Expanding the Scope of Replicable Unnatural DNA: Stepwise Optimization of a Predominantly Hydrophobic Base Pair

Thomas Lavergne, Mélissa Degardin, Denis A. Malyshev, Henry T. Quach, Kirandeep Dhami, Phillip Ordoukhanian, and Floyd E. Romesberg*

Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California, 92037, USA.

Table of Contents	Page
Synthetic Procedures and Characterizations	4
Figure S1: 600 MHz ¹ H NMR spectra (CD ₃ CN) of 2	26
Figure S2: 151 MHz ¹³ C NMR spectrum (CD ₃ CN) of 2	26
Figure S3: 600 MHz ¹ H NMR spectra (MeOD) of 3	27
Figure S4: 151 MHz ¹³ C NMR spectrum (MeOD) of 3	27
Figure S5: 600 MHz ¹ H NMR spectra (CD ₃ CN) of 4	
Figure S6: 151 MHz ¹³ C NMR spectrum (CD ₃ CN) of 4	
Figure S7: 600 MHz ¹ H NMR spectra (MeOD) of 5	29
Figure S8: 151 MHz ¹³ C NMR spectrum (MeOD) of 5	29
Figure S9: 600 MHz ¹ H NMR spectra (MeOD) of 10	30
Figure S10: 151 MHz ¹³ C NMR spectrum (MeOD) of 10	30
Figure S11: 600 MHz ¹ H NMR spectra (MeOD) of 11	31
Figure S12: 151 MHz ¹³ C NMR spectrum (MeOD) of 11	31
Figure S13: 600 MHz ¹ H NMR spectra (MeOD) of 12	32
Figure S14: 151 MHz ¹³ C NMR spectrum (MeOD) of 12	32
Figure S15: 600 MHz ¹ H NMR spectra (MeOD) of 13	33
Figure S16: 151 MHz ¹³ C NMR spectrum (MeOD) of 13	33
Figure S17: 600 MHz ¹ H NMR spectra (CD ₃ CN) of 29	34
Figure S18: 151 MHz ¹³ C NMR spectrum (CD ₃ CN) of 29	34
Figure S19: 600 MHz ¹ H NMR spectra (CD ₃ CN) of 31	35
Figure S20: 151 MHz ¹³ C NMR spectrum (CD ₃ CN) of 31	35
Figure S21: 600 MHz ¹ H NMR spectra (CD ₃ CN) of 32	36
Figure S22: 151 MHz ¹³ C NMR spectrum (CD ₃ CN) of 32	36
Figure S23: 600 MHz ¹ H NMR spectra (CD ₃ CN) of 33	37
Figure S24: 151 MHz ¹³ C NMR spectrum (CD ₃ CN) of 33	37

Figure S25: 600 MHz ¹ H NMR spectra (CD ₃ CN) of 34	
Figure S26: 151 MHz ¹³ C NMR spectrum (CD ₃ CN) of 34	
Figure S27: 600 MHz ¹ H NMR spectra (CD ₃ CN) of 38	
Figure S28: 151 MHz ¹³ C NMR spectrum (CD ₃ CN) of 38	
Figure S29: 162 MHz ³¹ P NMR spectra (D ₂ O) of 6	
Figure S30: 400 MHz ¹ H NMR spectra (D2O) of 6	
Figure S31: MALDI-TOF MS analysis of 6	
Figure S32: 162 MHz ³¹ P NMR spectra (D ₂ O) of 7	
Figure S33: 600 MHz ¹ H NMR spectra (D ₂ O) of 7	
Figure S34: 151 MHz ¹³ C NMR spectra (D ₂ O) of 7	
Figure S35: MALDI-TOF MS analysis of 7	
Figure S36: 162 MHz ³¹ P NMR spectra (D ₂ O) of 8	
Figure S37: 400 MHz ¹ H NMR spectra (D ₂ O) of 8	
Figure S38: MALDI-TOF MS analysis of 8	
Figure S39: 162 MHz ³¹ P NMR spectra (D ₂ O) of 14	
Figure S40: 400 MHz ¹ H NMR spectra (D ₂ O) of 14	
Figure S41: MALDI-TOF MS analysis of 14	
Figure S42: 162 MHz ³¹ P NMR spectra (D ₂ O) of 15	
Figure S43: 400 MHz ¹ H NMR spectra (D ₂ O) of 15	
Figure S44: MALDI-TOF MS analysis of 15	
Figure S45: 162 MHz ³¹ P NMR spectra (D ₂ O) of 16	
Figure S46: 400 MHz ¹ H NMR spectra (D ₂ O) of 16	
Figure S47: MALDI-TOF MS analysis of 16	
Figure S48: 162 MHz ³¹ P NMR spectra (D ₂ O) of 17	
Figure S49: 400 MHz ¹ H NMR spectra (D ₂ O) of 17	
Figure S50: MALDI-TOF MS analysis of 17	
Figure S51: 162 MHz ³¹ P NMR spectra (D ₂ O) of 35	
Figure S52: 400 MHz ¹ H NMR spectra (D ₂ O) of 35	
Figure S53: MALDI-TOF MS analysis of 35	
Figure S54: 162 MHz ³¹ P NMR spectra (D ₂ O) of 36	
Figure S55: 400 MHz ¹ H NMR spectra (D ₂ O) of 36	53
Figure S56: MALDI-TOF MS analysis of 36	53
Figure S57: 162 MHz ³¹ P NMR spectra (D ₂ O) of 39	
Figure S58: 400 MHz ¹ H NMR spectra (D ₂ O) of 39	
Figure S59: MALDI-TOF MS analysis of 39	

Figure S60: 162 MHz ³¹ P NMR spectra (D ₂ O) of 18	.55
Figure S61: MALDI-TOF MS analysis of 18	.56
Figure S62: MALDI-TOF MS analysis of 19	.56
Figure S63: MALDI-TOF MS analysis of 20	.57
Figure S64: MALDI-TOF MS analysis of 21	.57
Figure S65: MALDI-TOF MS analysis of 22	. 58
Figure S66: MALDI-TOF MS analysis of 23	. 58
Figure S67: MALDI-TOF MS analysis of 24	. 59
Figure S68: MALDI-TOF MS analysis of 25	. 59
Figure S69: MALDI-TOF MS analysis of 26	.60
Figure S70: 162 MHz ³¹ P NMR spectra (D ₂ O) of 27	.60
Figure S71: MALDI-TOF MS analysis of 27	.61
Figure S72: MALDI-TOF MS analysis of 28	.61
Figure S73: MALDI-TOF MS analysis of 37	.62
Figure S74: MALDI-TOF MS analysis of 40	.62
Table S1. %Incorporation-extension assays 20 μ M dXTP, 20 μ M dCTP, 10 s	.63
Table S2. %Incorporation-extension assays 1 μ M dXTP, 1 μ M dCTP, 10 s	.64
Table S3. %Incorporation-extension assays 1 μ M dXTP, 1 μ M dCTP, 5 s	.65
Table S4. %Incorporation-extension assays 0.2 μ M dXTP, 0.5 μ M dCTP, 10 s	.65
PCR amplification: determination of fidelity	.66
Table S5. PCR conditions	.67
Figure S75. Raw sequencing data after PCR amplification by OneTaq polymerase in the presence of d 5SICS TP and d X TP.	ne .68
Figure S76. Raw sequencing data after PCR amplification by <i>Taq</i> polymerase in the presence of d 5SICS TP and d X TP.	.83
Figure S77. Raw sequencing data after PCR amplification by KOD polymerase in the presence of d 5SICS TP and d X TP.	.92
Figure S78. Raw sequencing data after 10 ¹³ fold PCR amplification by OneTaq polymerase in the presence of d 5SICS TP and d X TP	.97
Figure S79. Correlation between %incorporation and PCR fidelity 1	L 03
References1	104

Synthetic Procedures and Characterizations

1,4-diiodo-2,5-dimethoxybenzene,¹ d**5**FMTP,² d**MMO2TP**,³ d**NaMTP**,² d**DMOTP**,⁴ d**PMO1TP**,⁵ d**NMO1TP**⁵ were synthesized as described previously.

Compound 2. To a solution of **1** (1.5 g, 4.0 mmol, 1 equiv) in dry pyridine (10 mL) was added toluyl chloride (1.1 mL, 7.7 mmol, 2.6 equiv). The reaction mixture was stirred overnight at room temperature under nitrogen atmosphere, quenched with MeOH (2 mL), concentrated two-fold and diluted with ethyl acetate. The organic layer was washed with saturated aqueous NaHCO₃, washed with brine, dried (Na₂SO₄), filtered and evaporated. The residue was subjected to silica gel column chromatography with a step gradient of methanol (0 – 2%) in CH₂Cl₂. The eluted product was dissolved in ethyl acetate (35 mL) and Et₃N (170 μ L, 1.2 mmol, 0.5 equiv) was added. The resulting solution was treated with 10% Pd/C (80 mg) under H₂ atmosphere and allowed to stir until the presence of the starting material could no longer be detected by TLC (~1 h). The reaction mixture was filtered through Celite and the filtrate was extracted with ethyl acetate and saturated aqueous NaHCO₃. The combined organic layers were dried (Na₂SO₄), filtered, and evaporated. The residue was subjected to silica gel column chromatography with a step gradient with EtOH (0 – 10%) in CH₂Cl₂ containing 1% triethylamine. The desired compound **2** was obtained as a white foam after evaporation of the solvent (1.05 mg, 2.21 mmol, 54% yield).

¹H NMR (600 MHz, CD₃CN) δ 7.95 (d, J = 7.9 Hz, 2H, Har), 7.91 (d, J = 7.9 Hz, 2H, Har), 7.32 (d, J = 7.8 Hz, 2H, Har), 7.28 (d, J = 7.9 Hz, 2H, Har), 7.10 (d, J = 8.1 Hz, 1H, H-6), 6.27 (s, 1H, H-3), 6.14 (d, J = 8.1 Hz, 1H, H-5), 5.52 (d, J = 5.9 Hz, 1H, H-3'), 5.34 (m, 1H, H-1'), 4.61 - 4.48 (m, 2H, H-5', H-5''), 4.37 (s, 1H, H-4'), 4.14 (s, 2H, NH₂), 3.73 (s, 3H, OCH₃), 2.41 (m, 7H, H-2', CH₃, CH₃), 2.11 (m, 1H, H-2'').

¹³C NMR (151 MHz, CD₃CN) δ 166.89 (OC=O), 166.81 (OC=O), 158.59 (C_{2 (C-OMe)}), 149.86 (C₄), 145.09 (Cq, Car), 144.9 (Cq, Car), 130.31 – 130.28 (CH, Ar), 130.08 (C₆) 128.27 – 127.21 (Cq, Car), 127.92 (C₁), 107.07 (C₅), 98.43 (C₃), 82.80 (C₄'), 78.24 (C₁'), 76.07 (C₃'), 65.48 (C₅'), 55.67 (OCH₃), 40.23 (C₂'), 21.55 (CH₃), 21.52 (CH₃).

HRMS-ESI: $[MH]^+$; calculated for $C_{28}H_{29}NO_6^+$: 476.2068 found: 476.2070.

Compound 3. To a solution of 2 (100 mg, 0.21 mmol, 1 equiv) in a mixture of dry pyridine:CH₂Cl₂ 1:1 (2 mL) was added tosyl chloride (50 mg, 0.25 mmol, 1.2 equiv). The reaction mixture was stirred 40 min at room temperature under a nitrogen atmosphere, quenched with MeOH (1 mL), concentrated two-fold, and diluted with ethyl acetate. The organic layer was washed with saturated aqueous NaHCO3, washed with brine, dried (Na₂SO₄), filtered, and evaporated. The residue was dissolved in MeOH (1 mL) and Et₃N (8 µL, 0.08 mmol, 0.4 equiv) and acrolein (70 µL, 1.05 mmol, 5 equiv) were added. The resulting solution was allowed to stir at room temperature for 20 min. The reaction mixture was diluted with ethyl acetate and washed first with saturated aqueous NaHCO₃ and then with brine. The combined organic layers were dried (Na₂SO₄), filtered and evaporated. The residue was subjected to silica gel column chromatography with a step gradient of MeOH (0 -7%) in CH₂Cl₂. The residue was dissolved in a mixture THF:HCl 3N 1:1 (2 mL) and stirred at 80 °C for 40 min under nitrogen atmosphere. The resulting mixture was diluted with ethyl acetate and quenched with saturated aqueous NaHCO₃ and washed with brine. The combined organic layers were dried (Na₂SO₄), filtered and evaporated. The residue was subjected to silica gel column chromatography with a step gradient of ethyl acetate (0 - 7.5%) in CH₂Cl₂. The eluted product was dissolved in a mixture of methanol:CH₂Cl₂ 8:2 (3 mL) and cooled at 5 °C. A 30% solution of MeONa in MeOH (140 µL, 0.7 mmol, 5 equiv) was added. The mixture was stirred for 1 h at room temperature. The reaction mixture diluted with ethyl acetate, quenched with saturated aqueous NH₄Cl, washed with brine, dried (Na₂SO₄), filtered and evaporated. The residue was subjected to silica gel column chromatography with a step gradient of methanol (0 - 8%) in CH₂Cl₂. The eluted product was dissolved in THF (3 mL) and potassium tert butoxide (78 mg, 0.7 mmol, 5 equiv) was added. The mixture was stirred for 3 h at 70 °C. The reaction mixture diluted with ethyl acetate, guenched with saturated aqueous NH₄Cl, washed with brine, dried (Na₂SO₄), filtered and evaporated. The residue was subjected to silica gel column chromatography with CH₂Cl₂. The desired compound **3** was obtained as a colorless oil after evaporation of the solvent (28 mg, 0.1 mmol, 48% yield).

¹H NMR (600 MHz, MeOD) δ 8.70 (m, 1H, H-8), 8.25 (m, 1H, H-7), 8.08 (s, 1H, H-6), 7.36 (m, 1H, H-9), 7.34 (s, 1H, H-3), 5.47 (m, 1H, H-1'), 4.30 (m, 1H, H-3'), 3.99 (m, 4H, H-4', OCH₃), 3.73 (m, 2H, H-5', H-5''), 2.47 (ddd, J = 13.2, 5.8, 2.0 Hz, 1H, H-2'), 1.80 (m, 1H, H-2'').

¹³C NMR (151 MHz, MeOD) δ 159.22 (C₂), 150.10 (C₈), 149.17 (C₄), 137.48 (C₁₀), 135.09 (C₁), 125.03 (C₆), 124.48 (C₅), 119.87 (C₉), 105.45 (C₃), 88.14 (C₄·), 76.02 (C₁·), 73.72 (C₃·), 63.49 (C₅·), 55.63 (OCH₃), 48.87 (s), 42.86 (C₂·).

HRMS-ESI: $[MH]^+$; calculated for $C_{15}H_{17}NO_4^+$: 276.1230 found: 276.1227.

Compound 4. To a solution of **2** (300 mg, 0.63 mmol, 1 equiv) in THF (1.5 mL) cooled at 0 °C was added a solution of 6M aqueous chlorhydric acid (2.4 mL) dropwise over a period of 15 min. A solution of sodium nitrite (70 mg, 1.0 mmol, 1.6 equiv) in water (600 µL) was added dropwise over a period of 10 min. After an additional 30 min at 0 °C, potassium iodide (415 mg, 2.5 mmol, 4 equiv) in water (1.2 mL) was added dropwise over a period of 10 min. The reaction mixture was stirred at 0 °C for 30 min then at room temperature for an additional hour. The mixture was quenched with saturated aqueous Na₂S₂O₃ and saturated aqueous NaHCO₃, washed with brine, extracted with ethyl acetate, dried (Na₂SO₄), filtered and evaporated. The resulting residue was subjected to a silica gel column chromatography with a step gradient of CH_2Cl_2 (50 – 100%) in hexane. The eluted product was dissolved in a mixture of methanol:CH₂Cl₂ 8:2 (5 mL) and cooled at 5 °C. A 30% solution of MeONa in MeOH (250 µL, 1.4 mmol, 4 equiv) was added. The mixture was stirred for 30 min at room temperature. The reaction mixture diluted with ethyl acetate, guenched with saturated aqueous NH₄Cl, washed with brine, dried (Na₂SO₄), filtered, and evaporated. The residue was subjected to silica gel column chromatography with a step gradient of methanol (0 - 8%) in CH₂Cl₂. The desired compound 4 was obtained as white foam after evaporation of the solvent (105 mg, 0.3 mmol, 47 %).

¹H NMR (600 MHz, CD₃CN) δ 7.30 - 7.24 (m, 3H, H-3, H-5, H-6), 5.22 (m, 1H, H-1'), 4.20 (m, 1H, H-3'), 3.81 (m, 1H, H-4'), 3.79 (s, 3H, OCH₃), 3.57 (m, 2H, H-5', H-5''), 3.19 (s, 1H, OH-3'), 2.87 (s, 1H, OH-5'), 2.25 – 2.16 (m, 1H, H-2'), 1.68 (m, 1H, H-2'').

¹³C NMR (151 MHz, CD₃CN) δ 157.73 (C₂), 132.18 (C₁), 130.43 (C₅), 128.51 (C₆), 120.43 (C₃), 92.74 (C₄), 88.16 (C_{4'}), 75.28 (C_{1'}), 73.88 (C_{3'}), 63.68 (C_{5'}), 56.37 (OCH₃), 42.87 (C_{2'}).

HRMS-ESI: $[MH]^+$; calculated for $C_{12}H_{15}IO_4^+$: 351.0088 found: 351.0085.

Compound 5. To a solution of **2** (100 mg, 0.21 mmol, 1 equiv) in THF (300 μ L) cooled at 0 °C was added a solution of 6M aqueous chlorhydric acid (800 μ L) dropwise over a period of 15 min. A solution of sodium nitrite (22 mg, 0.315 mmol, 1.5 equiv) in water (200 μ L) was added dropwise over a period of 10 min. After an additional 30 min at 0 °C, copper chloride (42 mg, 0.42 mmol, 2 equiv) in water (200 μ L) was added dropwise over a period of 10 min. The reaction mixture was stirred at 0 °C for 45 min then at room temperature for an additional

3 hours. The mixture was quenched with saturated aqueous NaHCO₃, washed with brine, extracted with ethyl acetate, dried (Na₂SO₄), filtered, and evaporated. The resulting residue was subjected to a long silica gel column and eluted with a step gradient of CH₂Cl₂ (50 – 100%) in hexane. The eluted product was dissolved in a mixture of methanol:CH₂Cl₂ 8:2 (2 mL) and cooled at 5 °C. A 30% solution of MeONa in MeOH (50 μ L, 0.25 mmol, 5 equiv) was added. The mixture was stirred for 1 h at room temperature. The reaction mixture was diluted with ethyl acetate, quenched with saturated aqueous NH₄Cl, washed with brine, dried (Na₂SO₄), filtered, and evaporated. The residue was subjected to silica gel column chromatography with a step gradient of methanol (1 – 5%) in CH₂Cl₂. The desired compound **5** was obtained as white foam after evaporation of the solvent (12 mg, 0.05 mmol, 23 %).

¹H NMR (600 MHz, MeOD) δ 7.47 (d, J = 8.1 Hz, 1H, H-3), δ 6.94 (d, J = 1.9 Hz, 1H, H-6), 6.91 (dd, J = 8.2, 1.9 Hz, 1H, H-5), 5.33 (m, 1H, H-1'), 4.26 (m, 1H, H-3'), 3.90 (m, 1H, H-4'), 3.81 (s, 3H, OCH₃), 3.64 (m, 2H, H-5', H-5''), 2.30 (ddd, J = 13.2, 5.6, 1.8 Hz, 1, H-2'), 1.73 (m, 1H, H-2'').

¹³C NMR (151 MHz, MeOD) δ 157.73 (C₂), 134.00 (C₄), 130.29 (C₆), 127.48 (C₁), 120.86 (C₅), 111.27 (C₃), 88.04 (C₄[']), 75.43 (C₁[']), 73.78 (C₃[']), 63.45 (C₅[']), 55.58 (OCH₃), 42.64 (C₂[']).

HRMS-ESI: $[MH]^+$; calculated for $C_{12}H_{15}ClO_4^+$: 259.0732 found: 259.0741.

Compound 10. A mixture of compound **9** (70 mg, 0.12 mmol, 1 equiv), copper iodide (7 mg, 0.035 mmol, 0.3 equiv), 1,10-phenanthroline (7 mg, 0.035 mmol, 0.3 equiv) and potassium (trifluoromethyl)trimethoxyborate (100 mg, 0.47 mmol, 4 equiv) in neat DMSO (0.5 mL) was stirred at 70 °C for 16 h. The reaction was diluted in ethyl acetate and quenched with saturated aqueous NaHCO₃, washed with brine, dried (Na₂SO₄), filtered, and evaporated. The resulting residue was subjected to silica gel column chromatography with a step gradient of CH₂Cl₂ (50 – 100%) in hexane. The eluted product was dissolved in a mixture of methanol and CH₂Cl₂ 8:2 (1 mL) and cooled at 5 °C. A 30% solution of MeONa in MeOH (90 µL, 0.47 mmol, 5 equiv) was added. The mixture was stirred for 45 min at room temperature. The reaction mixture was diluted with ethyl acetate, quenched with saturated aqueous NH₄Cl, washed with brine, dried (Na₂SO₄), filtered, and evaporated to silica gel column chromatography with a step gradient of 0.5 mL was subjected to silica gel column of MeONa in MeOH (90 µL, 0.47 mmol, 5 equiv) was added. The mixture was stirred for 45 min at room temperature. The reaction mixture was diluted with ethyl acetate, quenched with saturated aqueous NH₄Cl, washed with brine, dried (Na₂SO₄), filtered, and evaporated. The residue was subjected to silica gel column chromatography with a step gradient of methanol (0 – 6%) in CH₂Cl₂. The desired compound **10** was obtained as a colorless oil after evaporation of the solvent (41 mg, 0.07 mmol, 60 %).

¹H NMR (600 MHz, MeOD) δ 7.72 (d, J = 7.9 Hz, 1H, H-5), 7.24 (d, J = 7.8 Hz, 1H, H-6), 7.17 (s, 1H, H-3), 5.41 (m, 1H, H-1'), 4.28 (m, 1H, H-3'), 3.95 (m, 1H, H-4'), 3.89 (s, 3H, OCH₃), 3.68 (m, 2H, H-5', H-5''), 2.39 (dd, J = 13.1, 5.6 Hz, 1H, H-2'), 1.78 – 1.66 (m, 1H, H-2'').

¹³C NMR (151 MHz, MeOD) δ 157.65 (C₂), 136.70-120.40 (CF3, C₄, C₁, C₆), 118.28 (q, *J* = 4.1 Hz, C₅), 107.63 (q, *J* = 3.7 Hz, C₃), 88.58 (C_{4'}), 76.05 (C_{1'}), 74.29 (C_{3'}), 63.95 (C_{5'}), 56.11 (OCH₃), 43.10 (C_{2'}).

HRMS-ESI: $[MH]^+$; calculated for $C_{13}H_{15}F_3O_4^+$: 293.0995 found: 293.0985.

Compound 11. A mixture of compound **9** (140 mg, 0.23 mmol, 1 equiv), copper iodide (9 mg, 0.05 mmol, 0.2 equiv), tris(dibenzyllideneacetone)dipalladium (35 mg, 0.035 mmol, 0.15 equiv), vinyltributyltin (87 mg, 0.29 mmol, 1.2 equiv), and triphenylarsine (22 mg, 0.07 mmol, 0.3 equiv) in dioxane (1 mL) was stirred at 55 °C for 2 h. The reaction was diluted in ethyl acetate and quenched with saturated aqueous NaHCO₃, washed with brine, dried (Na₂SO₄), filtered and evaporated. The resulting residue was subjected to silica gel column chromatography with a step gradient of CH₂Cl₂ (55 – 100%) in hexane. The eluted product was dissolved in a mixture of methanol and CH₂Cl₂ 8:2 (2 mL) and cooled at 5 °C. A 30% solution of MeONa in MeOH (115 μ L, 0.6 mmol, 5 equiv) was added. The mixture was stirred for 45 min at room temperature. The reaction mixture diluted with ethyl acetate, quenched with saturated aqueous NH₄Cl, washed with brine, dried (Na₂SO₄), filtered, and evaporated to silica gel column chromatography with a step gradient of solution of MeONa in MeOH (115 μ L, 0.6 mmol, 5 equiv) was added. The mixture was stirred for 45 min at room temperature. The reaction mixture diluted with ethyl acetate, quenched with saturated aqueous NH₄Cl, washed with brine, dried (Na₂SO₄), filtered, and evaporated. The residue was subjected to silica gel column chromatography with a step gradient of methanol (0 – 5%) in CH₂Cl₂. The desired compound **11** was obtained as colorless oil after evaporation of the solvent (40 mg, 0.16 mmol, 65 %).

¹H NMR (600 MHz, MeOD) δ 7.46 – 7.42 (m, 1H, H-6), 7.01 – 6.95 (m, 2H, H-3, H-5), 6.70 (dd, J = 17.6, 10.9 Hz, 1H, H-7), 5.75 (dd, J = 17.6, 0.8 Hz, 1H, H-9), 5.39 (m, 1H, H-1'), 5.19 (dd, J = 10.9, 0.8 Hz, 1H, H-8), 4.26 (m, 1H, H-3'), 3.91 (m, 1H, H-4'), 3.82 (s, 3H, OCH₃), 3.65 (m, 2H, H-5', H-5''), 2.29 (ddd, J = 13.2, 5.6, 1.9 Hz, 1H, H-2'), 1.77 (ddd, J = 13.2, 10.2, 6.0 Hz, 1H, H-2'').

¹³C NMR (151 MHz, MeOD) δ 157.28 (C₂), 138.77 (C₇), 137.60 (C₄), 130.94 (C₁), 126.51 (C₆), 119.25 (C₅), 113.25 (C₃), 108.17 (C₈), 88.00 (C_{4'}), 75.83 (C_{1'}), 73.88 (C_{3'}), 63.53 (C_{5'}), 55.22 (OCH₃), 42.65 (C_{2'}).

HRMS-ESI: $[MH]^+$; calculated for $C_{14}H_{18}O_4^+$: 251.1278 found: 251.1284.

Compound 12. Compound **9** (120 mg, 0.2 mmol, 1 equiv), potassium hexacyanoferrate (II) (24 mg, 0.05 mmol, 0.25 equiv), potassium fluorine (12 mg, 0.2 mmol, 1 equiv), TBAB (66 mg, 0.2 mmol, 1 equiv), and palladium acetate (5 mg, 0.02 mmol, 0.1 equiv) in H₂O (2 mL) was heated to 150 °C for 15 min in a microwave synthesizer (Biotage AB, Sweden). The reaction was allowed to cool and the resulting mixture was concentrated, diluted with CH₂Cl₂, quenched with saturated aqueous NaHCO₃, washed with brine, dried (Na₂SO₄), filtered, and evaporated. The resulting residue was subjected to silica gel column chromatography with a step gradient of ethyl acetate (0 – 20%) in CH₂Cl₂. The eluted product was dissolved in a mixture of methanol and CH₂Cl₂ 8:2 (2 mL) and cooled at 5 °C. A 30% solution of MeONa in MeOH (60 μ L, 0.34 mmol, 5 equiv) was added. The mixture was stirred for 1 h at room temperature. The reaction mixture was diluted with ethyl acetate, quenched with saturated aqueous NH₄Cl, washed with brine, dried (Na₂SO₄), filtered and evaporated. The residue was subjected to silica gel column chromatography with a step gradient of mixture was diluted with ethyl acetate, quenched with saturated aqueous NH₄Cl, washed with brine, dried (Na₂SO₄), filtered and evaporated. The residue was subjected to silica gel column chromatography with a step gradient of methanol (0 – 6%) in CH₂Cl₂. The desired compound **12** was obtained as white foam after evaporation of the solvent (23 mg, 0.085 mmol, 44 %).

¹H NMR (600 MHz, MeOD) δ 7.71 (d, J = 7.8 Hz, 1H, H-6), 7.30 – 7.29 (m, 1H, H-5), 7.26 (s, 1H, H-3), 5.37 (m, 1H, H-1'), 4.26 (m, 1H, H-3'), 3.93 (m, 1H, H-4'), 3.87 (s, 3H, OCH₃), 3.65 (m, 2H, H-5', H-5''), 2.38 (ddd, J = 13.1, 5.7, 1.8 Hz, 1H, H-2'), 1.70 (m, 1H, H-2'').

¹³C NMR (151 MHz, MeOD) δ 157.11 (C₂), 137.98 (C₁), 127.13 (C₅), 125.36 (C₆), 119.33 (CN), 113.63 (C₃), 111.92 (C₄), 88.22 (C₄'), 75.44 (C₁'), 73.68 (C₃'), 63.37 (C₅'), 55.77 (OCH₃), 42.52 (C₂').

HRMS-ESI: $[MH]^+$; calculated for $C_{13}H_{15}NO_4^+$: 250.1074 found: 250.1067.

Compound 13. A mixture of compound **9** (80 mg, 0.14 mmol, 1 equiv), sodium azide (18 mg, 0.28 mmol, 2 equiv), copper iodide (3 mg, 0.014 mmol, 0.1 equiv), N,N-dimethylethylenediamine (5 µL, 0.04 mmol, 0.3 equiv), and sodium ascorbate (1.5 mg, 0.007 mmol, 0.05 equiv) in EtOH/H₂O (1 mL) was stirred at 90 °C for 45 min. The reaction was diluted in ethyl acetate and quenched with saturated aqueous NaHCO₃, washed with brine, dried (Na₂SO₄), filtered and evaporated. The resulting residue was subjected to silica gel column chromatography with a step gradient of CH₂Cl₂ (55 – 100%) in hexane. The eluted

product was dissolved in a mixture of Methanol and $CH_2Cl_2 8/2$ (2 mL) and cooled at 5 °C. A 30% solution of MeONa in MeOH (100 µL, 0.5 mmol, 5 equiv) was added. The mixture was stirred for 50 min at room temperature. The reaction mixture diluted with ethyl acetate, quenched with saturated aqueous NH₄Cl, washed with brine, dried (Na₂SO₄), filtered, and evaporated. The residue was subjected to silica gel column chromatography with a step gradient of methanol (0 – 6%) in CH₂Cl₂. The desired compound **13** was obtained as white foam after evaporation of the solvent (27 mg, 0.1 mmol, 73 %).

¹H NMR (600 MHz, CD₃CN) δ 7.52 (m, 1H, H-6), 6.66 (m, 1H, H-5), 6.58 (d, *J* = 2.1 Hz, 1H, H-3), 5.36 (m, 1H, H-1'), 4.27 (m, 1H, H-3'), 3.91 (m, 1H, H-4'), 3.82 (s, 3H, OCH₃), 3.66 (m, 2H, H-5', H-5''), 2.28 (m, 1H, H-2'), 1.76 (m, 1H, H-2'').

¹³C NMR (151 MHz, CD₃CN) δ 158.22 (C₂), 140.84 (C₄), 128.31 (C₆), 127.71 (C₁), 111.03 (C₅), 102.14 (C₃), 88.00 (C₄[']), 75.54 (C₁[']), 73.83 (C₃[']), 63.49 (C₅[']), 55.42 (OCH₃), 42.66 (C₂[']).

HRMS-ESI: $[MH]^+$; calculated for $C_{12}H_{15}N_3O_4^+$: 250.1135 found: 250.1127.

Compound 29. To a solution of 2-fluoro-5-methoxyaniline (2.4 g, 17.0 mmol, 1 equiv) in tetrahydrofuran (50 mL) at 0 °C was added NaHCO₃ (1.71 g, 20.41 mmol, 1.2 equiv). Benzyl chloroformate (2.9 mL, 20.41 mmol, 1.2 equiv) was then added dropwise under strong stirring. The mixture was allowed to warm to room temperature over 20 min, stirred for an additional hour, and then diluted with CH₂Cl₂. The organic layer was quenched with saturated aqueous NaHCO₃, washed with brine, dried (Na₂SO₄), filtered and evaporated. The residue was subjected to a short silica gel column and eluted with a step gradient of CH₂Cl₂ (10 - 70%) in hexane affording pure NH-Cbz 2-fluoro-5-methoxyaniline. To a solution of NH-Cbz 2-fluoro-5-methoxyaniline in acetonitrile (140 mL) at -20 °C was added silver sulfate (5.76 g, 18.49 mmol) and iodine (4.69 g, 18.49 mmol). The mixture was stirred at -20 °C for 40 min, guenched with saturated aqueous Na₂S₂O₃ (14 mL) and filtered through a Celite pad. The filtrate was concentrated to 10% of its original volume and diluted with CH₂Cl₂ (200 mL). The organic layer was quenched with saturated aqueous NaHCO₃, washed with brine, dried (Na₂SO₄), filtered and evaporated. The residue was subjected to silica gel column chromatography with a step gradient of CH_2Cl_2 (10 – 40%) in hexane. The desired compound 29 was obtained as white solid after evaporation of the solvent (5.52 g, 13.7 mmol, 81% yield).

¹H NMR (600 MHz, CD₃CN) δ 7.72 (br, 1H, NH), 7.68 (br, 1H, H-3), 7.54 (d, *J* = 10.1 Hz, 1H, H-6), 7.41 (m, 4H, H-ar (Cbz)), 7.35 (m, 1H, H-ar (Cbz)), 5.20 (s, 2H, OCH₂Ar (Cbz)), 3.80 (s, 3H, OCH₃).

¹³C NMR (151 MHz, CD₃CN) δ 155.78 (d, J = 2.1 Hz, C_{2 (C-OMe)}), 154.28 (NHC=O), δ 147.83 (d, J = 240.7 Hz, C₅), 137.44 (Cq, Car), 129.49-128.84 (CH, Ar), 128.41 (d, J = 12.1 Hz, C₄), 125.80 (d, J = 22.9 Hz, C₆), 104.66 (C₃), 76.37 (C₁), 67.76 (OCH₂Ph), 57.45 (OCH₃).

HRMS-ESI: $[MH]^+$; calculated for C₁₅H₁₄FINO₃⁺: 401.9997 found: 402.0017.

Compound 31. A mixture of palladium acetate (360 mg, 1.60 mmol, 0.15 equiv) and triphenylarsine (820 mg, 2.67, 0.25 equiv) in dry dimethylformamide (40 mL) was stirred under argon atmosphere at room temperature for 20 min. To this mixture was added 29 (6.43 g, 16.02 mmol, 1.5 equiv), **30** (3.68 g, 10.68 mmol, 1 equiv) and tri-n-butylamine (3.8 mL, 16.02 mmol, 1.5 equiv) in dimethylformamide (5 mL), and the resulting reaction mixture was stirred under nitrogen at 70 °C for 15 h. The reaction mixture was filtered through Celite and extracted with ethyl acetate and saturated aqueous NaHCO₃. The combined organic layers were dried (Na₂SO₄), filtered and evaporated. The residue was solubilized in THF (70 mL) and cooled in an ice bath. 1 M TBAF (25 mL, 23.5 mmol, 2.2 equiv) was added and the solution was stirred for 4 hours at room temperature. The reaction mixture was quenched with saturated aqueous NH₄Cl, extracted with ethyl acetate and saturated aqueous NaHCO₃. The combined organic layers were dried (Na₂SO₄), filtered and evaporated. The residue was subjected to silica gel column chromatography with a step gradient of ethyl acetate (0 - 20%)in CH₂Cl₂. The eluted product was dissolved in acetonitrile (15 mL), and the solution was cooled to -4 °C. Acetic acid (15 mL) then sodium triacetoxyborohydride (1.56 g, 5.65 mmol, 1.3 equiv) were added, and the mixture was stirred for 1 h. The reaction mixture was diluted with ethyl acetate, quenched with saturated aqueous NaHCO₃, washed with brine, dried (Na₂SO₄), filtered and evaporated. The residue was subjected to silica gel column chromatography with a step gradient of ethyl acetate (0 - 100 %) in CH₂Cl₂. The desired compound **31** was obtained as white foam after evaporation of the solvent (2.05 g, 5.23 mmol, 49% yield).

¹H NMR (600 MHz, CD₃CN) δ 7.61 (br, 1H, NH), 7.54 (br, 1H, H-3), 7.41 (m, 4H, H-ar (Cbz)), 7.34 (m, 1H, H-ar (Cbz)), 7.28 (d, *J* = 11.9 Hz, 1H, H-6), 5.22 (m, 1H, H-1'), 5.19 (s, 2H, OCH₂Ar (Cbz)), 4.21 (m, 1H, H-3'), 3.81 (m, 1H, H-4'), 3.76 (s, 3H, OCH₃), 3.58 (m, 2H, H-5',H-5''), 3.19 (d, *J* = 4.0 Hz, 1H, OH-3'), 2.91 (t, *J* = 6.0 Hz, 1H, OH-5'), 2.21(m, 1H, H-2'), 1.68 (ddd, *J* = 13.0, 10.1, 5.9 Hz, 1H, H-2'').

¹³C NMR (151 MHz, CD₃CN) δ 154.54 (C_{2 (C-OMe)}), 153.09 (NH*C*=O), 148.37 (d, J = 235.6 Hz, C₅), 137.60 (Cq, Car), 129.46-128.80 (CH, Ar), 128.80 (C_{1(c-sugar)}), 125.99 (d, J = 12.5 Hz, C₄), 113.43 (d, J = 22.4 Hz, C₆), 105.42 (C₃), 88.24 (C₄'), 75.02 (C₁'), 73.92 (C₃'), 67.56 (OCH₂Ph), 63.70 (C₅'), 56.56 (OCH₃), 43.13 (C₂').

HRMS-ESI: $[MH]^+$; calculated for C₂₀H₂₃FNO₆⁺: 392.1504 found: 392.1504.

Compound 32. To a solution of **31** (577 mg, 1.47 mmol, 1 equiv) in dry pyridine (10 mL) was added toluyl chloride (519 µL, 3.83 mmol, 2.6 equiv). The reaction mixture was stirred for 3 h at room temperature under nitrogen atmosphere, guenched with MeOH (1.5 mL), concentrated two-fold and diluted with ethyl acetate. The organic layer was washed with saturated aqueous NaHCO3, washed with brine, dried (Na2SO4), filtered and evaporated. The residue was subjected to silica gel column chromatography with a step gradient of methanol (0 - 4%) in CH₂Cl₂. The eluted product was dissolved in ethyl acetate (20 mL), and Et₃N (84 µL, 0.6 mmol, 0.5 equiv) was added. The resulting solution was treated with 10% Pd/C (38 mg) under H₂ atmosphere and allowed to stir until the presence of the starting material could no longer be detected by TLC (~1 h). The reaction mixture was filtered through Celite, and the filtrate was extracted with ethyl acetate and saturated aqueous NaHCO₃. The combined organic layers were dried (Na₂SO₄), filtered and evaporated. The residue was subjected to silica gel column chromatography with a step gradient with CH_2Cl_2 (10 – 60%) in hexane containing 1% triethylamine. The eluted product was solubilized (450 mg, 1.0 mmol, 1 equiv) in THF (6 mL) cooled at 0 °C was added a solution of 6 M aqueous chlorhydric acid (4 mL) dropwise over a period of 15 min. A solution of sodium nitrite (101 mg, 1.46 mmol, 1.6 equiv) and potassium iodide (908 mg, 5.47 mmol, 6 equiv) in water (4 mL) was added dropwise over a period of 10 min. The reaction mixture was stirred at 0 °C for 45 min, then at room temperature for an additional hour. The mixture was quenched with saturated aqueous Na₂S₂O₃ and saturated aqueous NaHCO₃, washed with brine, extracted with ethyl acetate, dried (Na₂SO₄), filtered and evaporated. The resulting residue was subjected to a long silica gel column using 40 Å silica with a step gradient of CH_2Cl_2 (30 – 90%) in hexane. The desired compound 32 was obtained as a colorless oil after evaporation of the solvent (220 mg, 0.37 mmol, 40% yield).

¹H NMR (600 MHz, CD₃CN) δ 7.96 (d, J = 8.2 Hz, 2H, Har), 7.85 (d, J = 8.2 Hz, 2H, Har), 7.33 (d, J = 8.0 Hz, 2H, Har), 7.28 – 7.23(m, 4H, Har, H-3, H-6), 5.54 (d, J = 6.2 Hz, 1H, H-3'), 5.35 (m, 1H, H-1'), 4.68-4.51 (m, 2H, H-5', H-5''), 4.49 (m, 1H, H-4'), 3.78 (s, 3H, OCH₃), 2.66 (dd, J = 13.9, 5.5 Hz, 1H, H-2'), 2.41 (s, 3H, CH₃), 2.38 (s, 3H, CH₃), 2.01 – 1.95 (m, 1H, H-2'').

¹³C NMR (151 MHz, CD₃CN) δ 166.96 (OC=O), 166.83 (OC=O), 157.28 (d, J = 235.2 Hz, C₅), 153.86 (C_{2 (C-OMe)}), 145.28 (Cq, Car), 145.12 (Cq, Car), 134.05 (d, J = 6.3 Hz, C₁), 130.42-130.15 (CH, Ar), 128.21 (Cq, Car), 128.14 (Cq, Car), 121.59 (C₃), 113.16 (d, J = 27.8 Hz, C₆), 83.51 (C₄[']), 78.96 (d, J = 27.5 Hz, C₄), 78.18 (C₁[']), 76.15 (C₃[']), 65.32 (C₅[']), 56.99 (OCH₃), 40.32 (C₂[']), 21.63 (CH₃), 21.59 (CH₃).

HRMS-ESI: $[MH]^+$; calculated for $C_{28}H_{27}FIO_6^+$: 605.0831 found: 605.0824

Compound 33. To a stirred solution of **32** (61 mg, 0.1 mmol, 1 equiv) in a mixture of Methanol and CH₂Cl₂ 8/2 (2 mL) and cooled at 5 °C. A 30% solution of MeONa in MeOH (100 μ L, 0.5 mmol, 5 equiv) was added. The mixture was stirred for 15 min at room temperature. The reaction mixture diluted with ethyl acetate, quenched with saturated aqueous NH₄Cl, washed with brine, dried (Na₂SO₄), filtered, and evaporated. The residue was subjected to silica gel column chromatography with a step gradient of methanol (0 – 4%) in CH₂Cl₂. The desired compound **33** was obtained as white foam after evaporation of the solvent (34 mg, 0.09 mmol, 61 %).

¹H NMR (600 MHz, CD₃CN) δ 7.31 (d, J = 9.0 Hz, 1H, H-6), 7.26 (d, J = 5.1 Hz, 1H, H-3), 5.20 (m, 1H, H-1'), 4.21 (m, 1H, H-3'), 3.83 (m, 1H, H-4'), 3.78 (s, 3H, OCH₃), 3.58 (m, 2H, H-5', H-5''), 3.23 (s, 1H, OH-3'), 2.95 (s, 1H, OH-5'), 2.25 (ddd, J = 13.0, 5.7, 1.9 Hz, 1H, H-2'), 1.66 (ddd, J = 13.1, 10.1, 5.9 Hz, 1H, H-2'').

¹³C NMR (151 MHz, CD₃CN) δ 157.31 (d, *J* = 234.9 Hz, C₅), 153.84 (C₂), 135.40 (d, *J* = 6.3 Hz, C₁), 121.40 (C₃), 113.44 (d, *J* = 6.3 Hz, C₆), 88.34 (C₄), 78.39 (d, *J* = 27.6 Hz, C₄), 75.16 (C₁), 73.80 (C₃), 63.59 (C₅), 56.95 (OCH₃), 42.91 (C₂).

HRMS-ESI: $[MH]^+$; calculated for $C_{12}H_{15}FIO_4^+$: 368.9994 found: 368.9989.

Compound 34. Compound **32** (120 mg, 0.20 mmol, 1 equiv), cesium carbonate (212 mg, 0.65 mmol, 2 equiv), copper iodide (13 mg, 0.07 mmol, 0.2 equiv), and 1,10-phenanthroline (24 mg, 0.1 mmol, 0.4 equiv) in methanol (0.8 mL) was heated to 110 °C for 6 h in a microwave synthesizer (Biotage AB, Sweden). The reaction was allowed to cool and the resulting mixture was concentrated, diluted with CH_2Cl_2 , quenched with saturated aqueous NaHCO₃, washed with brine, dried (Na₂SO₄), filtered, and evaporated. The resulting residue was subjected to silica gel column chromatography with a step gradient of methanol (0 – 4%) in CH_2Cl_2 . The desired compound **34** was obtained as white foam after evaporation of the solvent (25 mg, 0.09 mmol, 46%).

¹H NMR (600 MHz, CD₃CN) δ 7.24 (d, *J* = 12.6 Hz, 1H, H-6), 6.67 (d, *J* = 7.2 Hz, 1H, H-3), 5.22 (m, 1H, H-1'), 4.21 (m, 1H, H-3'), 3.87 (s, 3H, OCH₃), 3.81 (s, 3H, OCH₃), 3.79 (m, 1H, H-4'), 3.58 (m, 2H, H-5', H-5''), 3.21 (s, 1H, OH-3'), 2.93 (s, 1H, OH-5'), 2.16 (dd, *J* = 12.9, 5.1 Hz, 1H, H-2'), 1.74 – 1.65 (m, 1H, H-2'').

¹³C NMR (151 MHz, CD₃CN) δ 153.57 (C₂), 147.86 (d, *J* = 234.7 Hz, C₅), 147.55 (d, *J* = 11.9 Hz, C₄), 123.76 (d, *J* = 5.3 Hz, C₁), 114.21 (d, *J* = 21.0 Hz, C₆), 99.26 (C₃), 88.20 (C₄·), 74.87 (C₁·), 73.97 (C₃·), 63.72 (C₅·), 57.03 (OCH₃), 56.85 (OCH₃), 43.20 (C₂·).

HRMS-ESI: $[MH]^+$; calculated for C₁₃H₁₈FO₅⁺: 273.1133 found: 273.1133.

Compound 38. A mixture of palladium acetate (293 mg, 1.31 mmol, 0.15 equiv) and triphenylarsine (666 mg, 2.18, 0.25 equiv) in dry dimethylformamide (40 mL) was stirred under argon atmosphere at room temperature for 20 min. To this mixture was added 1,4diiodo-2,5-dimethoxybenzene (6.79 g, 17.4 mmol, 2 equiv), **30** (3.0 g, 8.7 mmol, 1 equiv), and tri-n-butylamine (4.1 mL, 17.4 mmol, 2 equiv) in dimethylformamide (5 mL), and the resulting reaction mixture was stirred under nitrogen at 70 °C for 15 h. The reaction mixture was filtered through Celite and extracted with ethyl acetate and saturated aqueous NaHCO₃. The combined organic layers were dried (Na₂SO₄), filtered and evaporated. The residue was solubilized in THF (60 mL) and cooled in an ice bath. 1 M TBAF (24 mL, 22.6 mmol, 2.2 equiv) was added and the solution was stirred for 1 h 15 m at room temperature. The reaction mixture was quenched with saturated aqueous NH₄Cl extracted with ethyl acetate and saturated aqueous NaHCO₃. The combined organic layers were dried (Na₂SO₄), filtered and evaporated. The residue was subjected to silica gel column chromatography with a step gradient of ethyl acetate (0 - 30%) in CH₂Cl₂. The eluted product was dissolved in acetonitrile (7 mL) and the solution was cooled to -4 °C. Acetic acid (8 mL) then sodium triacetoxyborohydride (652 mg, 3.08 mmol, 1.3 equiv) were added, and the mixture was stirred for 45 min. The reaction mixture was diluted with ethyl acetate, guenched with saturated aqueous NaHCO₃, washed with brine, dried (Na₂SO₄), filtered and evaporated. The residue was subjected to silica gel column chromatography with a step gradient of ethyl acetate (0 - 60 %) in CH₂Cl₂. The desired compound **38** was obtained as white foam after evaporation of the solvent (794 mg, 2.1 mmol, 24% yield).

¹H NMR (600 MHz, CD₃CN) δ 7.30 (s, 1H, H-3), 7.15 (s, 1H, H-6), 5.23 (m, 1H, H-1'), 4.22 (m, 1H, H-3'), 3.84 (m, 1H, H-4'), 3.79 (s, 3H, OCH₃), 3.75 (s, 3H, OCH₃), 3.61 (m, 2H, H-5', H-5''), 3.16 (d, J = 4.0 Hz, 1H, OH-3'), 2.87 (t, J = 5.9 Hz, 1H, OH-5'), 2.23 (ddd, J = 13.0, 5.8, 2.1 Hz, 1H, H-2'), 1.73 (ddd, J = 13.1, 9.9, 5.9 Hz, 1H, H-2'').

¹³C NMR (151 MHz, CD₃CN) δ 153.61 (C₅), 151.82 (C₂), 134.17 (C₁), 122.50 (C₃), 110.33 (C₆), 88.23 (C₄), 83.43 (C_{4(C-1)}), 75.57 (C₁), 73.81 (C₃), 63.66 (C₅), 57.47 (OCH₃), 56.89 (OCH₃), 42.99 (C₂).

HRMS-ESI: $[MH]^+$; calculated for $C_{13}H_{18}IO_5^+$: 381.0193 found: 381.0186

General Procedure for Triphosphate Synthesis: Proton sponge (1.3 equiv) and the free nucleoside derivative (1.0 equiv, see below) were dissolved in dry trimethyl phosphate (40 equiv) and cooled to -15 °C under nitrogen atmosphere. Freshly distilled POCl₃ (1.3 equiv) was added dropwise and the resulting mixture was stirred at -10 °C for 2 h. Tributylamine (6.0 equiv) and a solution of tributylammonium pyrophosphate (5.0 eq.) in dimethylformamide (0.5 M) were added. Over 30 min, the reaction was allowed to warm slowly to 0 °C and then was quenched by addition of 0.5 M aqueous Et₃NH₂CO₃ (TEAB) pH 7.5 (2 vol-equiv). The mixture was diluted two-fold with H₂O and the product was subjected to anion exchange chromatography (DEAE Sephadex (GE Healthcare)) with an elution gradient of 0 to 1.2 M TEAB, then evaporated and co-distilled with H₂O (3×). Additional purification by reverse-phase (C18) HPLC (0 – 35% CH₃CN in 0.1 M TEAB, pH 7.5) was performed.

Compound 6. Compound 6 (7.0 mg, 13.6 μ mol, 27%) was synthesized using the General Procedure described above starting from nucleoside **3** (14 mg, 50.1 μ mol).

³¹P NMR (162 MHz, D₂O) δ -10.74 (d, J = 19.4 Hz, γ-P), -11.02 (d, J = 20.0 Hz, α-P), -23.11 (t, J = 19.8 Hz, β-P).

¹H NMR (400 MHz, D₂O) δ 8.94 (d, *J* = 8.3 Hz, 1H, H-8), 8.82 (m, 1H, H-7), 8.28 (m, 1H, H-6), 7.75 (m, 1H, H-9), 7.35 (s, 1H, H-3), 5.51 (m, 1H, H-1'), 4.56 (m, 1H, H-3'), 4.28 (m, 1H, H-4'), 4.20 (m, 2H, H-5'), 4.04 (s, 3H, OCH₃), 3.18 (q, *J* = 7.3 Hz, 24H, N(CH₂CH₃)₃), 2.51 (ddd, *J* = 13.6, 6.3, 2.5 Hz, 1H, H-2'), 2.01 (m, 1H, H-2''), 1.26 (t, *J* = 7.3 Hz, 36H, N(CH₂CH₃)₃).

MS (MALDI-TOF⁻, matrix: 9-aminoacridine) (m/z): [M-H]⁻ calcd for C₁₅H₂₀NO₁₃P₃, 514.2; found, 514.8.

 $\varepsilon_{(\lambda = 329 \text{ nm})} = 4800 \text{ M}^{-1} \text{ cm}^{-1}; \ \varepsilon_{(\lambda = 230 \text{ nm})} = 26250 \text{ M}^{-1} \text{ cm}^{-1}$

Compound 7. Compound 7 (20.2 mg, 34.2 μ mol, 48%) was synthesized using the General Procedure described above starting from nucleoside 4 (25 mg, 71.4 μ mol).

³¹P NMR (162 MHz, D₂O) δ -10.36 (d, J = 19.9 Hz, γ-P), -10.85 (d, J = 20.3 Hz, α-P), -22.96 (t, J = 20.1 Hz, β-P).

¹H NMR (600 MHz, H₂O) δ 7.30 - 7.14 (m, 3H, H-3, H-5, H-6), 5.28 (dd, J = 10.3, 5.7 Hz, 1H, H-1'), 4.44 - 4.32 (m, 1H, H-3'), 4.05 - 4.00 (m, 1H, H-4'), 3.94 (m, 2H, H-5', H-5''), 3.73 (s, 3H, OCH3), 3.4 - 2.6 (m, 18H, (CH3CH2)₃N), 2.18 - 2.10 (m, 1H, H-2'), 2.01 - 1.87 (m, 1H, H-2''), 1.5 - 0.7 (m, 27H, (CH3CH2)₃N).

¹³C NMR (151 MHz, D₂O) δ 157.75 (C₂), 131.02 (C₁), 129.70 (C₅), 128.91 (C₆), 121.24 (C₃), 94.01 (C₄), 85.97 (C₄'), 75.88 (C₁'), 73.62 (C₃'), 66.85 (C₅'), 56.69 (OCH3), 47.37 ((CH3CH2)₃N), 42.95 (C₂'), 11.32 - 8.16 ((CH3CH2)₃N).

MS (MALDI-TOF⁻, matrix: 9-aminoacridine) (m/z): [M-H]⁻ calcd for C₁₂H₁₈IO₁₃P₃, 589.1 found, 589.7.

 $\varepsilon_{(\lambda = 279 \text{ nm})} = 3100 \text{ M}^{-1} \text{ cm}^{-1}; \ \varepsilon_{(\lambda = 235 \text{ nm})} = 12825 \text{ M}^{-1} \text{ cm}^{-1}$

Compound 8. Compound **8** (9.9 mg, 19.8 µmol, 57%) was synthesized using the General Procedure described above starting from nucleoside **5** (9 mg, 34.8 µmol).

³¹P NMR (162 MHz, D₂O) δ -10.90 (d, J = 19.3 Hz, γ-P), -11.11 (d, J = 20.0 Hz, α-P), -23.35 (t, J = 19.7 Hz, β-P).

¹H NMR (400 MHz, D₂O) δ 7.50 (m, 1H, H-3), 7.11 (d, J = 1.9 Hz, 1H, H-6), 7.08 (dd, J = 8.2, 2.0 Hz, 1H, H-5), 5.45 (m, 1H, H-1'), 4.55 (m, 1H, H-3'), 4.17 (m, 1H, H-4'), 4.10 (m, 2H, H-5'), 3.85 (s, 3H, OCH₃), 3.19 (q, J = 7.3 Hz, 18H, N(CH₂CH₃)₃), 2.29 (m, 1H, H-2'), 2.12 (m, 1H, H-2''), 1.27 (t, J = 7.3 Hz, 27H, N(CH₂CH₃)₃).

MS (MALDI-TOF⁻, matrix: 9-aminoacridine) (m/z): [M-H]⁻ calcd for C₁₂H₁₈ClO₁₃P₃, 497.6 found, 498.2.

 $\varepsilon_{(\lambda = 278 \text{ nm})} = 2050 \text{ M}^{-1} \text{ cm}^{-1}; \ \varepsilon_{(\lambda = 228 \text{ nm})} = 7650 \text{ M}^{-1} \text{ cm}^{-1}$

Compound 14. Compound **14** (4.4 mg, 8.3 µmol, 20%) was synthesized using the General Procedure described above starting from nucleoside **10** (12 mg, 41.1 µmol).

³¹P NMR (162 MHz, D₂O) δ -10.11 – -11.63 (m, γ-P, α-P), -23.35 (m, β-P).

¹H NMR (400 MHz, D₂O) δ 7.70 (d, *J* = 7.9 Hz, 1H, H-5), 7.38 (d, *J* = 7.6 Hz, 1H, H-6), 7.33 (s, 1H, H-3), 5.52 (m, 1H, H-1'), 4.56 (m, 1H, H-3'), 4.22 (m, 1H, H-4'), 4.12 (m, 2H, H-5'), 3.91 (s, 3H, OCH₃), 3.19 (m, 24H, N(CH₂CH₃)₃), 2.38 (ddd, *J* = 13.5, 5.8, 2.0 Hz, 1H, H-2'), 2.07 (m 1H, H-2''), 1.27 (t, *J* = 7.3 Hz, 36H, N(CH₂CH₃)₃).

MS (MALDI-TOF⁻, matrix: 9-aminoacridine) (m/z): [M-H]⁻ calcd for C₁₃H₁₈F₃O₁₃P₃, 531.2 found, 531.8.

 $\varepsilon_{(\lambda = 278 \text{ nm})} = 2450 \text{ M}^{-1} \text{ cm}^{-1}; \ \varepsilon_{(\lambda = 223 \text{ nm})} = 6900 \text{ M}^{-1} \text{ cm}^{-1}$

Compound 15. Compound **15** (6.3 mg, 12. 9 μ mol, 36%) was synthesized using the General Procedure described above starting from nucleoside **11** (9 mg, 35.9 μ mol).

³¹P NMR (162 MHz, D₂O) δ -10.88 (d, J = 19.3 Hz, γ-P), -11.08 (d, J = 20.0 Hz, α-P), -23.32 (t, J = 19.6 Hz, β-P).

¹H NMR (400 MHz, D₂O) δ 7.52 (d, *J* = 7.8 Hz, 1H, H-6), 7.25 – 7.14 (m, 2H, H-3, H-5), 6.79 (m, 1H, H-7), 5.89 (d, *J* = 17.6 Hz, 1H, H-9), 5.49 (m, 1H, H-1'), 5.33 (d, *J* = 11.0 Hz, 1H, H-8), 4.56 (m, 1H, H-3'), 4.17 (m, 1H, H-4'), 4.11 (m, 2H, H-5'), 3.89 (s, 3H, OCH₃), 3.19 (q, *J* = 7.3 Hz, 20H, N(CH₂CH₃)₃), 2.30 (ddd, *J* = 13.6, 5.7, 1.7 Hz, 1H, H-2'), 2.13 (m, 1H, H-2''), 1.27 (t, *J* = 7.3 Hz, 30H N(CH₂CH₃)₃).

MS (MALDI-TOF⁻, matrix: 9-aminoacridine) (m/z): [M-H]⁻ calcd for C₁₄H₂₁O₁₃P₃, 489.2 found, 489.9.

 $\varepsilon_{(\lambda = 295 \text{ nm})} = 3035 \text{ M}^{-1} \text{ cm}^{-1}; \ \varepsilon_{(\lambda = 254 \text{ nm})} = 11970 \text{ M}^{-1} \text{ cm}^{-1}$

Compound 16. Compound **16** (8.2 mg, 16.8 μ mol, 42%) was synthesized using the General Procedure described above starting from nucleoside **12** (10 mg, 40.1 μ mol).

³¹P NMR (162 MHz, D₂O) δ -10.93 (d, J = 19.2 Hz, γ-P), -11.16 (d, J = 20.1 Hz, α-P), -23.39 (t, J = 19.6 Hz, β-P).

¹H NMR (400 MHz, D₂O) δ 7.69 (d, *J* = 7.9 Hz, 1H, H-6), 7.44 (dd, *J* = 7.9, 1.5 Hz, 1H, H-5), 7.36 (m, 1H, H-3), 5.50 (m, 1H, H-1'), 4.54 (m, 1H, H-3'), 4.21 (m, 1H, H-4'), 4.11 (m, 2H, H-5'), 3.88 (s, 3H, OCH₃), 3.19 (q, *J* = 7.3 Hz, 20H, N(CH₂CH₃)₃), 2.39 (m, 1H, H-2'), 2.03 (m, 1H, H-2''), 1.26 (t, *J* = 7.3 Hz, 30H).

MS (MALDI-TOF⁻, matrix: 9-aminoacridine) (m/z): [M-H]⁻ calcd for C₁₃H₁₈NO₁₃P₃, 488.2 found, 488.7.

 $\varepsilon_{(\lambda = 295 \text{ nm})} = 4365 \text{ M}^{-1} \text{ cm}^{-1}; \ \varepsilon_{(\lambda = 242 \text{ nm})} = 13900 \text{ M}^{-1} \text{ cm}^{-1}$

Compound 17. Compound **17** (4.8 mg, 9.5 μ mol, 25%) was synthesized using the General Procedure described above starting from nucleoside **13** (10 mg, 37.7 μ mol).

³¹P NMR (162 MHz, D₂O) δ -10.92 (d, J = 19.2 Hz, γ-P), -11.11 (d, J = 20.1 Hz, α-P), -23.36 (t, J = 19.7 Hz, β-P).

¹H NMR (400 MHz, D₂O) δ 7.52 (d, *J* = 8.3 Hz, 1H, H-6), 6.79 (dd, *J* = 8.3, 2.2 Hz, 1H, H-5), 6.72 (d, *J* = 2.1 Hz, 1H, H-3), 5.45 (m, 1H, H-1'), 4.55 (m, 1H, H-3'), 4.15 (m, 1H, H-4'), 4.10 (m, 2H, H-5'), 3.85 (s, 3H, OCH₃), 3.19 (q, *J* = 7.3 Hz, 22H, N(CH₂CH₃)₃), 2.25 (m, 1H, H-2'), 2.15 (m, 1H, H-2''), 1.30 – 1.17 (t, *J* = 7.3 Hz, 33H, N(CH₂CH₃)₃).

MS (MALDI-TOF⁻, matrix: 9-aminoacridine) (m/z): [M-H]⁻ calcd for C₁₂H₁₈N₃O₁₃P₃, 504.2 found, 504.6.

 $\varepsilon_{(\lambda = 287 \text{ nm})} = 3960 \text{ M}^{-1} \text{ cm}^{-1}; \ \varepsilon_{(\lambda = 254 \text{ nm})} = 10330 \text{ M}^{-1} \text{ cm}^{-1}$

Compound 35. Compound **35** (3.9 mg, 6.5 μ mol, 16%) was synthesized using the General Procedure described above starting from nucleoside **33** (15 mg, 40.7 μ mol).

³¹P NMR (162 MHz, D₂O) δ -7.87 (d, J = 13.6 Hz, γ-P), -10.61 (d, J = 19.9 Hz, α-P), -22.32 (t, J = 20.1 Hz, β-P).

¹H NMR (400 MHz, D₂O) δ 7.42 (d, *J* = 5.1 Hz, 1H, H-3), 7.32 (d, *J* = 8.8 Hz, 1H, H-6), 5.40 (m, 1H, H-1'), 4.54 (m, 1H, H-3'), 4.18 (m, 1H, H-4'), 4.10 (m, 2H, H-5'), 3.82 (s, 3H, OCH₃), 3.19 (q, *J* = 7.3 Hz, 18H, N(CH₂CH₃)₃), 2.33 (ddd, *J* = 13.5, 5.8, 2.0 Hz, 1H, H-2'), 2.11 - 2.00 (m, 1H, H-2''), 1.27 (t, *J* = 7.3 Hz, 27H, N(CH₂CH₃)₃).

MS (MALDI-TOF⁻, matrix: 9-aminoacridine) (m/z): [M-H]⁻ calcd for C₁₂H₁₇FIO₁₃P₃, 607.9 found, 607.4

 $\varepsilon_{(\lambda = 232 \text{ nm})} = 8570 \text{ M}^{-1} \text{ cm}^{-1}; \ \varepsilon_{(\lambda = 288 \text{ nm})} = 3605 \text{ M}^{-1} \text{ cm}^{-1}$

Compound 36. Compound **36** (4.5 mg, 8.8 µmol, 20%) was synthesized using the General Procedure described above starting from nucleoside **34** (12 mg, 44.1 µmol).

³¹P NMR (162 MHz, D₂O) δ -7.95 (d, J = 12.4 Hz, γ-P), -10.59 (d, J = 20.0 Hz, α-P), -22.37 (t, J = 20.2 Hz, β-P).

¹H NMR (400 MHz, D₂O) δ 7.32 (d, J = 12.4 Hz, 1H, H-6), 6.82 (d, J = 7.3 Hz, 1H, H-3), 5.42 (m, 1H, H-1'), 4.56 (m, 1H, H-3'), 4.15 (m, 1H, H-4'), 4.07 (m, 2H, H-5'), 3.93 (s, 3H, OCH₃), 3.86 (s, 3H, OCH₃), 3.22 (q, J = 7.3 Hz, 18H, N(CH₂CH₃)₃), 2.23 (ddd, J = 13.4, 5.7, 1.8 Hz, 1H, H-2'), 2.13 (m, 1H, H-2''), 1.27 (t, J = 7.3 Hz, 27H, N(CH₂CH₃)₃).

MS (MALDI-TOF⁻, matrix: 9-aminoacridine) (m/z): [M-H]⁻ calcd for C₁₃H₂₀FO₁₄P₃, 512.2; found, 512.5.

 $\varepsilon_{(\lambda = 282 \text{ nm})} = 6565 \text{ M}^{-1} \text{ cm}^{-1}; \ \varepsilon_{(\lambda = 224 \text{ nm})} = 13945 \text{ M}^{-1} \text{ cm}^{-1}$

Compound 39. Compound **39** (6.1 mg, 9.9 µmol, 27%) was synthesized using the General Procedure described above starting from nucleoside **38** (14 mg, 36.8 µmol).

³¹P NMR (162 MHz, D₂O) δ -6.42 (d, J = 20.3 Hz, γ-P), -10.66 (d, J = 19.9 Hz, α-P), -22.13 (t, J = 20.3 Hz, β-P).

¹H NMR (400 MHz, D₂O) δ 7.49 (s, 1H, H-3), 7.18 (s, 1H, H-6), 5.43 (m, 1H, H-1'), 4.58 (m, 1H, H-3'), 4.20 (s, 1H, H-4'), 4.14 (m, 2H, H-5'), 3.88 (s, 3H, OCH₃), 3.81 (s, 3H, OCH₃), 3.20 (q, *J* = 7.3 Hz, 18H, N(CH₂CH₃)₃), 2.31 (m, 1H, H-2'), 2.10 (m, 1H, H-2''), 1.26 (t, *J* = 7.3 Hz, 27H, N(CH₂CH₃)₃).

MS (MALDI-TOF⁻, matrix: 9-aminoacridine) (m/z): [M-H]⁻ calcd for C₁₃H₂₀IO₁₄P₃, 619.9; found, 619.8

 $\varepsilon_{(\lambda = 296 \text{ nm})} = 3805 \text{ M}^{-1} \text{ cm}^{-1}; \ \varepsilon_{(\lambda = 233 \text{ nm})} = 8665 \text{ M}^{-1} \text{ cm}^{-1}$

General Procedure for aqueous palladium cross-coupling on triphosphate: Palladium acetate (0.1 equiv) and TPPTS (0.5 equiv) were dissolved in a mixture of H₂O:ACN 2:1 and stirred under argon atmosphere at room temperature for 20 min. The resulting mixture was added to a solution of triphosphate derivative 7 (1 mg, 1.13 μ mol, 1 equiv), boronic acid derivative (2 equiv) and cesium carbonate (6 equiv) in H₂O/ACN 2/1. The resulting reaction mixture was stirred under nitrogen at 70 °C for 30 min and filtered through a 0.45 micron filter. The product was isolated via anion exchange chromatography (DEAE Sephadex) with an elution gradient of 0 to 1.2 M TEAB, evaporated, co-distilled with H₂O (3×). Additional purification by reverse-phase (C18) HPLC (0 – 35% CH₃CN in 0.1 M TEAB, pH 7.5) was performed.

Compound 18. Compound **18** (528 µg, 0.96 µmol, 85%) was synthesized using the General Procedure described above using phenyl boronic acid.

MS (MALDI-TOF⁻, matrix: 9-aminoacridine) (m/z): [M-H]⁻ calcd for C₁₈H₂₃O₁₃P₃, 539.3 found, 539.2.

³¹P NMR (162 MHz, D₂O) δ -9.82 (d, J = 20.2 Hz, γ-P), -10.73 (d, J = 20.1 Hz, α-P), -22.74 (t, J = 20.0 Hz, β-P).

Compound 19. Compound **19** (448 µg, 0.81 µmol, 72%) was synthesized using the General Procedure described above using pyridine-3-boronic acid.

MS (MALDI-TOF⁻, matrix: 9-aminoacridine) (m/z): [M-H]⁻ calcd for C₁₇H₂₂NO₁₃P₃, 540.3 found, 540.9.

Compound 20. Compound **20** (465 µg, 0.86 µmol, 76%) was synthesized using the General Procedure described above using pyridine-4-boronic acid.

MS (MALDI-TOF⁻, matrix: 9-aminoacridine) (m/z): [M-H]⁻ calcd for C₁₇H₂₂NO₁₃P₃, 540.3 found, 540.7

Compound 21. Compound **21** (418 µg, 0.79 µmol, 70%) was synthesized using the General Procedure described above using *N*-Boc-pyrrole-2-boronic acid.

MS (MALDI-TOF⁻, matrix: 9-aminoacridine) (m/z): [M-H]⁻ calcd for C₁₆H₂₂NO₁₃P₃, 528.3 found, 528.8.

Compound 22. Compound **22** (424 µg, 0.80 µmol, 71%) was synthesized using the General Procedure described above using 1-(triisopropylsilyl)-1H-pyrrole-3-boronic acid.

MS (MALDI-TOF⁻, matrix: 9-aminoacridine) (m/z): [M-H]⁻ calcd for C₁₆H₂₂NO₁₃P₃, 528.3 found, 528.9.

Compound 23. Compound **23** (515 µg, 0.97 µmol, 86%) was synthesized using the General Procedure described above using 2-furanboronic acid.

MS (MALDI-TOF⁻, matrix: 9-aminoacridine) (m/z): [M-H]⁻ calcd for C₁₆H₂₁O₁₄P₃, 529.3 found, 529.7.

Compound 24. Compound **24** (473 µg, 0.89 µmol, 79%) was synthesized using the General Procedure described above using 3-furanboronic acid.

MS (MALDI-TOF⁻, matrix: 9-aminoacridine) (m/z): [M-H]⁻ calcd for C₁₆H₂₁O₁₄P₃, 529.3 found, 529.9.

Compound 25. Compound **25** (482 µg, 0.88 µmol, 78%) was synthesized using the General Procedure described above using 2-thiopheneboronic acid.

MS (MALDI-TOF⁻, matrix: 9-aminoacridine) (m/z): [M-H]⁻ calcd for C₁₆H₂₁O₁₃P₃S, 545.3 found, 545.8.

Compound 26. Compound **26** (475 µg, 0.87 µmol, 77%) was synthesized using the General Procedure described above using 3-thiopheneboronic acid.

MS (MALDI-TOF⁻, matrix: 9-aminoacridine) (m/z): [M-H]⁻ calcd for C₁₆H₂₁O₁₃P₃S, 545.3 found, 545.9.

General Procedure for aqueous copper catalyzed Sonogashira coupling on triphosphate: Palladium acetate (0.1 equiv) and TPPTS (0.5 equiv) were dissolved in a mixture of H₂O:ACN 2:1 and stirred under argon atmosphere at room temperature for 20 min. The resulting mixture was added to a solution of triphosphate derivative 7 (1.5 mg, 1.69 μ mol, 1 equiv), copper iodide (0.1 equiv), alkyne derivative (10 to 50 equiv), and triethylamine (8 equiv) in H₂O:ACN 2:1. The resulting reaction mixture was stirred under nitrogen at 55–70 °C for 30 m and filtered through a 0.45 micron filter. The product was isolated via anion exchange chromatography (DEAE Sephadex) with an elution gradient of 0 to 1.2 M TEAB, then evaporated and co-distilled with H₂O (3×). Additional purification by reverse-phase (C18) HPLC (0 – 35% CH₃CN in 0.1 M TEAB, pH 7.5) was performed.

Compound 27. Compound **27** (593 µg, 1.18 µmol, 70%) was synthesized using the General Procedure described above using propyne gas.

MS (MALDI-TOF⁻, matrix: 9-aminoacridine) (m/z): [M-H]⁻ calcd for C₁₅H₂₁O₁₃P₃, 501.2 found, 501.6.

³¹P NMR (162 MHz, D₂O) δ -9.91 (d, J = 20.0 Hz, γ-P), -11.01 (d, J = 20.0 Hz, α-P), -22.80 (t, J = 20.0 Hz, β-P).

 $\varepsilon_{(\lambda = 254 \text{ nm})} = 12100 \text{ M}^{-1} \text{ cm}^{-1}; \ \varepsilon_{(\lambda = 288 \text{ nm})} = 2460 \text{ M}^{-1} \text{ cm}^{-1}$

Compound 28. Compound **28** (495 μ g, 1.01 μ mol, 60 %) was synthesized using the General Procedure described above using triethylsilylacetylene. The triethylsilyl-protected triphosphate derivative was treated with 30% NH₄OH and stirred at room temperature for 1 h. The desired acetylene derivative was obtained after evaporation of the solvents.

MS (MALDI-TOF⁻, matrix: 9-aminoacridine) (m/z): [M-H]⁻ calcd for C₁₄H₁₉O₁₃P₃, 487.2 found, 487.2.

 $\varepsilon_{(\lambda = 252 \text{ nm})} = 12990 \text{ M}^{-1} \text{ cm}^{-1}; \ \varepsilon_{(\lambda = 295 \text{ nm})} = 2650 \text{ M}^{-1} \text{ cm}^{-1}$

Compound 37. Compound **37** (622 μ g, 1.23 μ mol, 50%) was synthesized using the General Procedure described above starting from triphosphate derivative **35** (1.5 mg, 2.46 μ mol).

MS (MALDI-TOF⁻, matrix: 9-aminoacridine) (m/z): [M-H]⁻ calcd for C₁₄H₁₈FO₁₃P₃, 506.0; found, 506.6.

 $\varepsilon_{(\lambda = 300 \text{ nm})} = 3720 \text{ M}^{-1} \text{ cm}^{-1}; \ \varepsilon_{(\lambda = 248 \text{ nm})} = 11900 \text{ M}^{-1} \text{ cm}^{-1}$

Compound 40. Compound **40** (508 μ g, 0.98 μ mol, 40 %) was synthesized using the General Procedure described above starting from triphosphate derivative **39** (1.5 mg, 2.42 μ mol).

MS (MALDI-TOF⁻, matrix: 9-aminoacridine) (m/z): [M-H]⁻ calcd for C₁₅H₂₁O₁₄P₃, 518.0; found, 518.6.

 $\varepsilon_{(\lambda = 282 \text{ nm})} = 6565 \text{ M}^{-1} \text{ cm}^{-1}; \ \varepsilon_{(\lambda = 224 \text{ nm})} = 13945 \text{ M}^{-1} \text{ cm}^{-1}$

Figure S2: 151 MHz ¹³C NMR spectrum (CD₃CN) of 2

S28

Figure S10: 151 MHz ¹³C NMR spectrum (MeOD) of 10

S31

S33

S34

S37

Figure S30: 400 MHz ¹H NMR spectra (D₂O) of 6

Figure S32: 162 MHz 31 P NMR spectra (D₂O) of 7

40

Figure S34: 151 MHz 13 C NMR spectra (D₂O) of 7

Figure S36: 162 MHz 31 P NMR spectra (D₂O) of 8

Figure S42: 162 MHz 31 P NMR spectra (D₂O) of 15

Figure S50: MALDI-TOF MS analysis of 17

Figure S53: MALDI-TOF MS analysis of 35

Figure S56: MALDI-TOF MS analysis of 36

Figure S59: MALDI-TOF MS analysis of 39

Figure S61: MALDI-TOF MS analysis of 18

Figure S62: MALDI-TOF MS analysis of 19

Figure S63: MALDI-TOF MS analysis of 20

Figure S64: MALDI-TOF MS analysis of 21

Figure S66: MALDI-TOF MS analysis of 23

Figure S67: MALDI-TOF MS analysis of 24

Figure S68: MALDI-TOF MS analysis of 25

Figure S71: MALDI-TOF MS analysis of 27

Figure S72: MALDI-TOF MS analysis of 28

Figure S73: MALDI-TOF MS analysis of 37

Figure S74: MALDI-TOF MS analysis of 40

X	%Incorporation	%Extension		
MMO2	72.9	86.3		
NaM	77.1	84.4		
DMO	72.9	87.7		
NMO1	72.1	41.7		
PMO1	71.0	14.1		
5FM	72.1	87.5		
IMO	74.0	86.5		
CIMO	74.0	87.8		
QMO	72.9	47.9		
CNMO	72.9	87.7		
TfMO	72.9	69.9		
VMO	70.0	87.1		
ZMO	74.0	87.8		
PrMO	72.9	89.0		
EMO	72.9	89.0		
PhMO	67.1	7.5		
PyMO1	65.0	12.8		
PyMO2	72.9	16.4		
TpMO1	71.0	9.9		
TpMO2	72.1	12.5		
FuMO1	71.0	26.8		
FuMO2	71.0	22.5		
PMO2	70.0	17.1		
PMO3	62.9	44.4		
FIMO	74.0	86.5		
FDMO	62.9	85.7		
FEMO	74.0	87.5		
MIMO	51.0 9.8			
MEMO	52.9	37.7		
"Incorporation	and extension reactions were ru	n with 20 µM dMMO2 analog		
and 20 µM dC	1P.			

Table S1. %Incorporation-extension assays 20 μ M dXTP, 20 μ M dCTP, 10 second reaction times.^{*a*}

dCTP, 10 se	cond reaction times."			
Χ	%Incorporation	%Extension		
MMO2	27.3 ± 1.7	49.8 ± 0.4		
NaM	68.8 ± 1.7	33.2 ± 0.8		
DMO	39.6 ± 2.5	68.4 ± 1.8		
NMO1	30.6 ± 0.4	4.9 ± 0.7		
PMO1	31.0 ± 3.5	3.8 ± 0.8		
5FM	24.0 ± 1.7	71.4 ± 0.7		
IMO	65.4 ± 1.3	19.8 ± 1.2		
CIMO	55.4 ± 2.9	49.3 ± 1.2		
QMO	57.1 ± 1.7	7.4 ± 0.9		
CNMO	60.6 ± 1.7	33.9 ± 3.5		
TfMO	43.8 ± 0.4	11.0 ± 0.7		
VMO	23.3 ± 2.1	33.5 ± 0.6		
ZMO	55.4 ± 3.8	53.0 ± 0.4		
PrMO	47.9 ± 1.7	32.9 ± 2.4		
EMO	55.0 ± 0.0	56.1 ± 1.0		
PhMO	16.7 ± 1.3	2.5 ± 0.8		
PyMO1	13.3 ± 1.7	2.1 ± 0.9		
PyMO2	29.4 ± 1.3	4.4 ± 0.0		
TpMO1	40.0 ± 2.5	2.5 ± 0.8		
ТрМО2	38.8 ± 1.7	2.9 ± 0.0		
FuMO1	30.4 ± 1.7	4.4 ± 0.0		
FuMO2	38.8 ± 2.9	3.9 ± 0.8		
PMO2	17.9 ± 0.8	4.4 ± 0.0		
PMO3	11.3 ± 1.3	6.6 ± 0.1		
FIMO	68.1 ± 1.5	25.2 ± 0.2		
FDMO	15.6 ± 1.3	29.1 ± 0.9		
FEMO	67.7 ± 0.4	70.3 ± 2.5		
MIMO	11.0 ± 0.2	6.7 ± 1.2		
MEMO	10.4 ± 0.4	8.6 ± 0.1		
<i>u</i> ₋ .				

Table S2. %Incorporation-extension assays 1 μ M dXTP, 1 μ M dCTP, 10 second reaction times.^{*a*}

-

.

^{*a*}Incorporation reactions were run with 1 μ M d**MMO2** analog and 1 μ M dCTP. Extension reactions were run with 20 μ M d**MMO2** analog and 1 μ M dCTP.

dCTP, 5 second reaction times."				
Χ	%Incorporation	%Extension		
MMO2	16.7 ± 0.5	30.2 ± 1.9		
NaM	64.0 ± 0.8	22.3 ± 1.2		
DMO	21.7 ± 3.6	51.9 ± 1.1		
5FM	15.0 ± 0.0	51.8 ± 1.2		
IMO	51.7 ± 1.3	13.8 ± 1.9		
CIMO	39.0 ± 0.0	33.3 ± 0.5		
CNMO	41.4 ± 1.7	21.8 ± 1.8		
ZMO	39.7 ± 0.5	35.7 ± 0.5		
PrMO	34.7 ± 1.3	20.1 ± 2.0		
EMO	37.3 ± 1.3	39.1 ± 0.3		
FIMO	61.0 ± 2.5	17.2 ± 1.1		
FEMO	56.7 ± 0.9	51.9 ± 2.5		

Table S3. %Incorporation-extension assays 1 μ M dXTP, 1 μ M dCTP, 5 second reaction times.^{*a*}

^{*a*}Incorporation reactions were run with 1 μ M d**MMO2** analog and 1 μ M dCTP. Extension reactions were run with 20 μ M d**MMO2** analog and 1 μ M dCTP.

Table S4.	%Incorporation-extension	assays	0.2	μΜ	dXTP,	0.5
_μM dCTP,	10 second reaction times ^{<i>a</i>}					

X	%Incorporation	%Extension
MMO2	10.4 ± 0.4	34.7 ± 2.2
NaM	46.3 ± 0.4	21.5 ± 1.3
DMO	13.3 ± 0.4	52.4 ± 2.3
5FM	8.3 ± 1.0	53.5 ± 0.5
IMO	22.7 ± 1.3	12.5 ± 2.2
CIMO	17.7 ± 0.4	34.4 ± 1.9
CNMO	17.9 ± 0.8	24.5 ± 2.4
ZMO	12.3 ± 0.4	36.2 ± 2.5
PrMO	14.0 ± 0.0	20.7 ± 1.5
EMO	17.1 ± 0.8	38.7 ± 0.9
FIMO	34.4 ± 0.4	16.7 ± 0.9
FEMO	31.3 ± 0.4	51.0 ± 0.8

^{*a*}Incorporation reactions were run with 0.2 μ M d**MMO2** analog and 0.5 μ M dCTP. Extension reactions were run with 20 μ M d**MMO2** analog and 0.5 μ M dCTP.

PCR amplification: determination of fidelity

The retention of an unnatural base pair (f, percent retention of an unnatural base pair) was measured using raw sequencing data and normalized to fidelities per doubling, as described.^{6,7} Briefly, the presence of an unnatural nucleotide leads to a sharp termination of the sequencing profile, while mutation to a natural nucleotide results in "read-through" (compare sequencing traces of dNaM/d5SICS and dMEMO/d5SICS in Fig. S62). The extent of the "read-through" is thus inversely correlated with the retention of the unnatural base pair. To use the sequencing data as a quantitative measurement of PCR fidelity, we performed calibration experiments in the range of 50-100% retention of the unnatural base pair (see the Supporting Information and Malyshev, 2009⁶ for a complete description). Therefore, low retention (<50%) and high "read-through" make the quantification inaccurate and thus f the threshold for fidelity quantification.

Quantification of the high retention (>50%) was performed by adjusting the start and stop points for the Sequencing Analysis software (Applied Biosystems) and then determining the average signal intensity individually for each channel (A, C, G and T) for peaks within those defined points (35-45 nucleotides in length) before (section L) and after (section R) the unnatural nucleotide. The R/L ratio was normalized using sequencing calibration plots to account for both noise in the sequencing chromatograms and the read-through in the control samples. (see Malyshev, 2009⁶ for details). The R/L ratio of after normalization (R/L_{norm}) corresponds to the percentage of the natural sequences in the pool. Finally, the retention of the unnatural base pair (F) was calculated as $1 - (R/L)_{norm}$ and the

retention of the unnatural base pair per doubling (fidelity, f) was calculated as $F^{\frac{1}{\log_2 A}}$, where A is an amplification and $\log_2 A$ is the number of doublings. Each sample before and PCR amplification was sequenced in triplicate in each direction to minimize sequencing error (Fig. S62-65).

	OneTaq	Taq	OneTaq 10 ¹³ fold	KOD
Buffer	1×OneTaq buffer	1×Taq buffer	1×OneTaq buffer	1× KOD Hot Start DNAP buffer
Enzyme concentration, U/µL	0.02	0.02	0.02	0.02
Template	D6 (0.1 ng)	D6 (0.01 ng)	$D6 (0.01 \text{ ng})^1$	D6 (0.1 ng)
dNTPs, µM	200	200	200	700
d5SICSTP, µM	100	100	100	100
d X TP, μM	100	100	100	100
Mg^{2+} , mM	3	3	3	6
Primers, µM	1	1	1	1
Thermal conditions				
Initial denaturing	-	-	-	98°C 30 s
Denaturing	96°C 10 s	96°C 10 s	96°C 10 s	96°C 10 s
Annealing	60°C 15 s	$60^{\circ}C\ 15\ s$	60°C 15 s	60°C 15 s
Extension	68°C 60 s	68°C 15 s	68°C 60 s	68°C 60 s
# of cycles	14	17	16+16+16 ¹	16

Table S5. PCR conditions

¹Initial amount of template was 0.01 ng. PCR mixture was amplified over 16 cycles, diluted 40 000 fold and amplified over another 16 cycles. Such dilution/amplification step was repeated resulting in 48 total cycles of amplification.

Figure S75. Raw sequencing data after PCR amplification by OneTaq polymerase in the presence of d**5SICS**TP and d**X**TP. Triplicate data shown.

Figure S76. Raw sequencing data after PCR amplification by *Taq* polymerase in the presence of d**5SICS**TP and d**X**TP. Triplicate data shown.

Figure S77. Raw sequencing data after PCR amplification by KOD polymerase in the presence of d**5SICS**TP and d**X**TP. Triplicate data shown.

Figure S78. Raw sequencing data after 10^{13} fold PCR amplification by OneTaq polymerase in the presence of d**5SICS**TP and d**X**TP. Triplicate data shown.

Figure S79. Correlation between %incorporation and PCR fidelity

References

- (1) Yi, C. Y.; Blum, C.; Lehmann, M.; Keller, S.; Liu, S. X.; Frei, G.; Neels, A.; Hauser, J.; Schurch, S.; Decurtins, S. *J Org Chem* (2010) *75*, 3350-3357.
- (2) Seo, Y. J.; Hwang, G. T.; Ordoukhanian, P.; Romesberg, F. E. *J Am Chem Soc* (2009) *131*, 3246-3252.
- (3) Leconte, A. M.; Hwang, G. T.; Matsuda, S.; Capek, P.; Hari, Y.; Romesberg, F. E. *J Am Chem Soc* (2008) *130*, 2336-2343.
- (4) Malyshev, D. A.; Pfaff, D. A.; Ippoliti, S. I.; Hwang, G. T.; Dwyer, T. J.; Romesberg, F. E. *Chem Eur J* (2010) *16*, 12650-12659.
- (5) Lavergne, T.; Malyshev, D. A.; Romesberg, F. E. Chem Eur J 2012, 18, 1231-1239.
- (6) Malyshev, D. A.; Seo, Y. J.; Ordoukhanian, P.; Romesberg, F. E. J Am Chem Soc (2009) 131, 14620-14621.
- (7) Malyshev, D. A.; Dhami, K.; Quach, H. T.; Lavergne, T.; Ordoukhanian, P.; Torkamani, A.; Romesberg, F. E. *Proc Natl Acad Sci USA* (2012) *109*, 12005-12010.