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Supplementary Figure 1 | Setup diagram: Abbreviations: Pulsed laser source (PLS), Optical Isolator (OI), 
Half-wave plate (HWP), Polarizing beamsplitter (PBS), Beam dump (BD), Mirror (M), 50/50 cube beamsplitter 
(BS), Acousto-optic modulator (AOM), Neutral density lter-wheel (ND), Path length matching arm (PLM), 
Single-mode ber acting as spatial lter (SF), Collimating lens (CL), Sample (S), Ultrasound transducer (UST), 
50 mm planoconvex lens (L1), Dichroic beamsplitter (DBS), Interference lter (IF), 25 mm planoconvex lens 
(L2), Photomultiplier tube (PMT), Polarizer (P), 90/10 plate beamsplitter (PLB1), Digital optical phase conjuga-
tion setup (DOPC), 50/50 plate beamsplitter (PLB2), Photography compound lens (PL), sCMOS camera 
(sCMOS), Spatial light modulator (SLM), 300 mm plano-convex lens (L3), Microscope objective (MO), Di user 
disk (DD), Di user Disk on Rotation mount (RDD), Relay lens system (RL) imaging the illumated spot on the 
di user disk onto the sample (RL), Observing camera (OC)
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Supplementary Figure 2 | Variance encoding of optical transmission modes. a, Schematic of the scattering process and 
the setup: An input wavefront illuminates the sample and is randomized as it reaches the ultrasound focal plane 
(represented as a 1D vector b). A fraction of the randomized wavefront passing the Gaussian-shaped ultrasound focus (g) 
gets frequency-shifted by the acousto-optic e!ect (b’), before propagating through the second tissue section 
(represented by the scattering matrix TBC). The frequency-shifted wavefront leaving the tissue (c) is then selectively 
detected using digital phase-shifting holography. As the input wavefront reaching the sample is randomized by rotating 
a di!user disk, all realizations of the wavefronts can be inserted into the rows of one data matrix for each plane. b, 
Exemplary shifted ultrasound foci g1,2, wavefronts b’1,2 and  data sets B’1,2 (displaying the absolute of the complex valued 
matrices). Due to the complex normal statistics of speckle, the expected variance along the columns of B’1,2 is |g1,2|2. c, Sum 
(left) and di!erence (middle and right) data sets calculated from the two data sets shown in panel b. Note that the 
expected variance along columns of B’1-2 and B’1+2 will follow |g1-g2|2  and |g1+g2|2, respectively. Right: di!erence of 
di!erenctially weighted datasets, with shifted null-point of variance d, Simulation of regular time reversal (TRUE 
focusing), resulting in a speckled optical focus the size of the ultrasound focus. e, Simulation of time reversal of variance-
encoded light (TROVE), resulting in a focus the size of an individual speckle, which can be computationally shifted. (Plots 
show normalized intensity).



 

 

Supplementary Note 
Simulations 
As a first confirmation of our ability to encode and decode individual spatial transmission modes, we 

implemented the TROVE framework in a numerical simulation (see Supp. Fig. 2a). As shown in Supp. 

Fig. 2b, we generated complex random (normally distributed) matrices B and TBC and chose two 

overlapping 1-D Gaussian functions g1 and g2, representing the shifted ultrasound foci that convert B into 

B'1 and B’2, respectively (see supplementary methods for details). We then calculated the matrices C1 and 

C2 that would have been measured outside the scattering medium in a real experiment. With the decoding 

strategy outlined in the Methods section, using only C1 - C2, we calculated the vector v that maximized the 

ratio of variances along C1+2 and C1-2 (Supp. Fig. 1c). When this vector was time-reversed (multiplied by 

TBC
*

 in the simulation), we were able to achieve a tight speckle-sized focus at the intersection of the two 

functions g1 and g2 (see Supp. Fig. 2e). Comparatively, when we simulated the TRUE framework by time-

reversing one row of either the C1 or the C2 matrix, we found that the resultant field consisted of a multi-

mode focus, the size of the much larger Gaussian-shaped ultrasound (g1 or g2) (Supp. Fig.  2d).  

The simulations of TRUE and TROVE focusing described above were implemented using custom 

routines written in MATLAB (The Mathworks). The simulations were divided into three modules: First, 

we generated the complex random matrices B1,2 (1000 repetitions by 200 pixels at ultrasound plane) and 

TBC (200 pixels at ultrasound plane by 1000 pixels at the detection plane; the size of TBC was chosen to be 

as large as the memory of our computer would permit). To simulate speckle autocorrelation, we 

convolved B1,2 with a speckle autocorrelation function (a Gaussian of FWHM = 5). We then chose 

Gaussian functions representing g1,2 the ultrasound foci (FWHM = 50, σ = 21, shifted by 2σ) and 

calculated the matrices C1,2 = B·G1,2·TBC. Second, we performed the same analysis on C1,2 which we also 

performed on experimentally measured data to obtain the vector v maximizing the Rayleigh quotient (see 

above). Third, we simulated time reversal of this vector by multiplying its complex conjugate by TBC
T. 

Finally, the time-reversed focus was moved by computationally shifting the intersection point between 



 

the two Gaussian foci. This is achieved by changing the scalar k in the equation C1-2= C1-kC2. The 

intersection between g1 and k·g2 could be shifted predictably according to k = 2ex/σ (where g1 and g2 are 

Gaussian functions whose means are separated by 2σ, and x is the shift of the intersection point). 

Derivation of a computationally efficient decoding algorithm 
The proposed eigenvalue formula used to determine the optimal phase pattern ν* to display on the spatial 

light modulator, given an acquired data set, is justified as follows. We limit this proof to a two 

dimensional geometry, with straightforward extension to three dimensions.  We assume the scattering 

events between the ultrasound focus at the ultrasound plane and the detector at the output plane are 

represented by a transmission matrix T. The detector collects m measurements across n pixels of speckle 

data with the ultrasound focus located first at position 1, and then at position 2. We assume the underlying 

speckle field along b does not change between measurements with the ultrasound focus at these two 

different locations. This allows us to express the recorded data with a shared underlying speckle data 

matrix, B, modified by two different Gaussian envelopes representing the ultrasound at two different 

positions, described by diagonal matrices G1 and G2, respectively. The two calculated data matrices of 

interest are, 

  C1+2= BG1T  + BG2T = BG1+2T (1) 

  C1-2 = BG1T  - BG2T = BG1-2T, (2) 

where G1 and G2 are n x n square with a shifted Gaussian function along the diagonal and zeros elsewhere. 

G1+2 and G1-2 are also square diagonal matrices containing the Gaussian functions’ sum and difference, 

respectively. The m x n underlying data matrix B contains independent speckle field measurements along 

its rows. Note that due to our ordering of matrices, the spatial covariance matrix of the above data will 

take the form CC*, while the data’s Gram matrix will take the form C*C, which is opposite from common 

notation.  

As discussed in the main text, TROVE’s computational goal is to identify a single mode at the ultrasound 

plane corresponding to the intersection of the two Gaussian ultrasound envelopes centred at g1 and g2. 



 

This goal is achieved by finding a vector v along which the variance of C1+2 is maximal and the variance 

of C1-2 is minimal. Such a vector v will maximize the Rayleigh Quotient Q of the covariance matrices of 

the two datasets, C1-2
*C1-2 and C1+2

*C1+2: 

 Q = v*C1+2
*C1+2v/(v*C1-2

*C1-2 v).  (3) 

The maximization of the Rayleigh Quotient above is associated with a solution to the generalized 

eigensystem,  

 C1+2
*C1+2ν = C1-2

*C1-2λν,  (4) 

with eigenvalue λ. We express the eigenvector ν associated with the maximum eigenvalue λ of this 

general eigensystem as, 

  ν = eig[(C1-2
*C1-2)−1C1+2

*C1+2],  (5) 

where eig[] represents a principal eigenvector identification operator. In practice, due to the high n x n 

dimensionality of the spatial covariance matrices C1+2
*C1+2 and C1-2

*C1-2, Eq. (5) is difficult to 

computationally evaluate.  Instead, we desire an eigenvector solution based on the much smaller m x m 

Gram matrices C1+2C1+2
* and C1-2C1-2

*. 

We apply two approximations about the structure of the recorded speckle data to determine a 

computational solution based on two m x m Gram matrices. First, we suppose that the complex random 

Gaussian transmission matrix T satisfies TT* ≈ I. This approximation commonly underlies phase 

conjugation experiments, and the associated error approaches zero as T increases in size (i.e. more 

transmitted speckles are measured and phase conjugated) – as long as long-range (C2) and infinite-range 

(C3) correlations can be neglected (Phys. Rev. Lett. 64, 2787-2790 (1990)). Such higher-order 

correlations may be neglected in samples with many open channels, including those used in our 

experiments as well as biological tissue. Second, we also assume the matrix B comprising the many 

recorded underlying speckle fields at the ultrasound focus is also complex random Gaussian. As the 

recorded data matrix is rectangular (m x n, n > m), this leads us to the approximations B*B ≈ Inxn and BB* 



 

≈ Imxm, where I is the identity matrix, following the same approximation applied to T. The latter 

approximation improves as m approaches n. 

Proceeding with the derivation, we first move C1-2*C1-2 in Eq. (4) to the left side by taking its inverse: 

  (C1-2*C1-2)−1C1+2*C1+2ν = λν.  (6) 

Then, plugging Eq. (1) and Eq. (2) into Eq. (6) leads to, 

  (T*G1-2B*BG1-2T)−1(T*G1+2B*BG1+2T)ν = λν.   (7)  

Applying our second approximation that B*B = I , this simplifies to, 

  (T*G1-22T)-1(T*G1+22T) ν = λν.  (8) 

Evaluating the inverse and using our first approximation that T−1 = T* leads to,   

  T*G1-2-2G1+22Tν = λν.  (9) 

Here, G1-2-2 is a square matrix with G1-2-2(i,j) = 1/G1-22(i,j) for all i=j and G1-2-2(i,j) = 0 for all i~=j.  Eq. (9) 

can be transformed from an n x n matrix eigensystem to a smaller m x m matrix eigensystem by 

attempting to solve for a new eigenvector y, where ν = T*B*y. Plugging this relationship into Eq. (9) 

yields, 

  T*G1-2-2G1+22 T(T*B*y) = λ(T*B*y).  (10) 

Applying our first approximation to the left side and then multiplying both sides by T from the left leads 

to, 

  G1-2-2 G1+22B*y = B*λy.  (11) 

Multiplying by an additional factor B from the left on either side and applying our second approximation 

to the right side leads to, 

  BG1-2-2G1+22B*y = λy.  (12) 

Again, following our approximation that B*B = I, we can insert this term into the middle of Eq. (12) to 

produce, 



 

  (BG1-2
-2B*)(B G1+2

2B*)y = λy.  (13) 

G1-2
-2 is a diagonal matrix, and under our second assumption B and B* setup an orthogonal basis for the 

term in parentheses on the left. Thus, Eq. (13) is equivalent to, 

  (BG1-2
2B*)-1 (BG1+2

2B*)y = λy.  (14) 

Here, we see that the two terms in the parenthesis can be expressed in terms of the original data matrices 

C1+2 and C1-2 as, 

  (C1-2C1-2
*)−1(C1+2C1+2

*)y = λy,   (15) 

which is the desired re-expression of the eigensystem in Eq. (4) in terms of the smaller m x m Gram 

matrices C1+2C1+2
* and C1-2C1-2

*. Our first approximation is used once more while transforming Eq. (14) to 

Eq. (15). We can find the originally desired eigenvector ν associated with the largest eigenvalue λ by 

solving Eq. (15) for the largest eigenvector y, and then solving ν = T*B*y: 

  ν = T*B*·eig[(C1-2C1-2
*)−1(C1+2C1+2

*) ]  = (BT)*·eig[(C1-2C1-2
*)−1(C1+2C1+2

*)]. (16) 

Since the experiment does not allow direct access to the data matrix BT, we use the approximation 

BG1+2T ≈ BT to instead generate the approximate eigenvector evaluation, 

  ν ≈ C1+2
*·eig[(C1-2C1-2

*)−1(C1+2C1+2
*)]   (17) 

This final approximation is justified as follows. We should expect a successful solution to Eq. (16) to take 

the general form ν = (d(x)·T)*, where d(x) is a row vector with 1 in row x and 0’s elsewhere. This is 

supported by the intuitive notion that our goal is to refocus to a small delta function-like spot at a position 

x, which is equivalent to determining one row of T. Under such an assumption, inserting a diagonal 

matrix G between d(x) and T does not alter their matrix product up to a constant scaling factor, given 

G(x,x) is non-zero, which is guaranteed by setting G=G1+2 and ensuring the desired mode x is near the 

intersection of the two summed Gaussians. 

Finally, for computational efficiency, the above equation can be rewritten to involve an 

eigendecomposition of a Hermitian matrix: 



 

  ν ≈ C1+2
*·(C1-2C1-2

*)−1/2·eig[(C1-2C1-2
*)−1/2(C1+2C1+2

*)(C1-2C1-2
*)−1/2]  (18)  

No additional approximations are required to obtain Eq. (18) from Eq. (17).  

This derivation can be easily extended to the 2D case, where we find v along which the variance of 

C1+2+3+4 is maximal and the sum of the variances of C1-4 and C2-3  is minimal, obtaining: 

  ν ≈ C1+2+3+4
*·(C1-4C1-4

*+ C2-3C2-3
*)−1/2

· 
eig[(C1-4C1-4

*+ C2-3C2-3
*)−1/2(C1+2+3+4C1+2+3+4

*)( C1-4C1-4
*+ C2-3C2-3

*)−1/2]  (19)  

Preservation of variance 
The main article refers to the fact that variance across realizations is preserved as modes propagate 

through a scatter. We derive and justify the statement as follows: We note that the covariance of 

realizations in the dataset B’ is expressed as B’B’*. Using the approximation TT* ≈ I described above, we 

can derive 

  CC* = (B’T)(B’T)* = B’TT*B’* ≈ B’B’*  (20)  

This equation states that the realizations covariance at the ultrasound plane can be approximated by the 

realizations covariance at the output plane. 

  



 

Scanning / orthogonalisation of modes 
To ensure separation between spatial modes corresponding to nearby points in the ultrasound plane, we 

used the following orthogonalisation strategy: First, by weighing the data matrices as described above, we 

obtained 100 optical modes v, corresponding to a 2D 6 x 6 grid of points at the XY-plane at the 

ultrasound focus (grid spacing: 5µm) and created a matrix V containing all vectors v in its columns. We 

then orthogonalised this matrix with the aid of its singular value decomposition: V = PQR’, where Q is a 

diagonal matrix, and P and R are orthogonal matrices. The orthogonalised version of V was then 

calculated as Vo= PR’. When each of the columns of Vo was time-reversed, we achieved focusing to the 

corresponding point on a grid with 5µm separation. To obtain a final 12 x 12 grid with 2.5 µm spacing, 

we performed the above procedure 4 times with shifted grids (with (0/2.5) µm shift in X and (0/2.5) µm 

shift in Y). 

 

 

 


