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Supplementary Information: Systematic identification of 
proteins that elicit drug side effects 

Michael Kuhn, Mumna Al Banchaabouchi, Monica Campillos, Lars Juhl Jensen, Cornelius 

Gross, Anne-Claude Gavin, Peer Bork 

Review of the literature 

Due to space constraint of the main manuscript, we here present a short overview of the 

literature. We first condense the main features of the articles into a tabular form, then give a 

concise summary for each article. 

Research papers 
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Experimental validation + – – – – – – – – – – – 

Validation from literature + – + – – – – + – – – + 

Use protein structures – – – – – – – – + – + – 

Use drug–target databases + – + + + + + + – – – + 

Use drug–target text-mining – – – – – – – – – + + – 

Prediction: protein–SE + – (+) – + + – – (+) + + + 

Prediction: pathway–SE – – – – – + – + – – – – 

Prediction: drug–SE – + + – – + – – – – – – 

Complete set of SE + + + + + + – + – – – – 

Use only post-marketing SE – – – – – – + – – – + – 

Complete set of targets + (+) – + + + + + – + (+) – 

Complete set of drugs + + + + + + – + – – – – 

Drug–drug interactions – – – – – – + – – – – – 
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• Atias and Sharan. An algorithmic framework for predicting side effects of drugs. 

Journal of Computational Biology (2011) 18(3), 207-218.  

 Atias and Sharan developed an algorithm to predict side effects of new drugs based 

on the chemical structure and the effect of gene expression of drugs. Target 

information is indirectly used through gene expression profiles. 

• Bender et al. Analysis of Pharmacology Data and the Prediction of Adverse Drug 

Reactions and Off-Target Effects from Chemical Structure. ChemMedChem (2007) 

vol. 2 (6) pp. 861-873 

 For a subset of 70 targets, Bayesian side effect profiles are built that are then used 

to predict potential side effects of drugs. Correlations of proteins and side effects 

are computed for all targets, but only a subset is shown in detail and the 

correlations are not validated experimentally or on a large scale from the 

literature.  

• Biospectra approach:  

 Over the course of several years, Fliri et al. developed and expanded the 

“Biospectra approach”, combining various aspects of drugs such as known targets 

and chemical structure. They use hierarchical clustering to find e.g. links between 

chemical structure of drugs and side effects. Predictions of side effects are possible 

given partial biospectra.  

o Fliri et al. Analysis of drug-induced effect patterns to link structure and side 

effects of medicines. Nat Chem Biol (2005) vol. 1 (7) pp. 389-97 

o Fliri et al. Biological spectra analysis: Linking biological activity profiles to 

molecular structure. Proc Natl Acad Sci USA (2005) vol. 102 (2) pp. 261-6 

o Fliri et al. Biospectra analysis: model proteome characterizations for linking 

molecular structure and biological response. J Med Chem (2005) vol. 48 (22) 

pp. 6918-25 

o Fliri et al. Analysis of System Structure-Function Relationships. 

ChemMedChem (2007) vol. 2 (12) pp. 1774-1782 

o Fliri et al. Drug effects viewed from a signal transduction network perspective. 

J Med Chem (2009) vol. 52 (24) pp. 8038-46 
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• Krejsa et al.. Predicting ADME properties and side effects: the BioPrint approach. 

Current opinion in drug discovery & development (2003) 6(4), 470-480. 

 Krejsa et al. propose to create side effect profiles of in vitro targets in order to 

predict potential side effects of drug candidates, using a chi-square test. However, 

they do not investigate if the correlation they found (but do not show) reflect the 

underlying molecular mechanism.   

• Lin et al. Analysis of adverse drug reactions using drug and drug target interactions 

and graph-based methods. Artif Intell Med (2010) vol. 48 (2-3) pp. 161-6 

 For post-marketing side effects suspected to be caused by drug–drug interactions, 

possible causative factors are investigated on a patient-by-patient basis.  

• Mizutani et al. Relating Drug-Protein Interaction Network with Drug Side Effects. 

Bioinformatics (2012) 28 (18) i522–i528 

 Clusters of drugs, proteins and side effects are detected for in a global analysis. 

However, the protein–side effect pairs are not validated with external data. 

• Scheiber et al. Gaining insight into off-target mediated effects of drug candidates with 

a comprehensive systems chemical biology analysis. Journal of chemical information 

and modeling (2009) vol. 49 (2) pp. 308-17 

 From extensive drug–target and drug–side effect data, Bayesian profiles are built 

for the occurrence of side effects in pathways. A number of proteins within the 

pathways are then verified from the literature.  

• Xie et al. In silico elucidation of the molecular mechanism defining the adverse effect 

of selective estrogen receptor modulators. PLoS Comput Biol (2007) vol. 3 (11) pp. 

e217 

 Using molecular docking, Xie et al. find off-targets of selective estrogen receptor 

modulators and relate the number of off-targets to the number of side effects.  

• Xie et al. Drug Discovery Using Chemical Systems Biology: Identification of the 

Protein-Ligand Binding Network to Explain the Side Effects of CETP Inhibitors. 

PLoS Computational Biology (2009) vol. 5 (5) (May) pp e1000387.  

 Xie et al. extend the off-target network of CETP inhibitors using docking. These off-

targets are then related to observed side effects. 
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• Yang et al. A CitationRank algorithm inheriting Google technology designed to 

highlight genes responsible for serious adverse drug reaction. Bioinformatics (2009) 

vol. 25 (17) pp. 2244-50 

 Lun Yang et al. use text-mining to identify gene candidates responsible for six side 

effects, and employ a ranking algorithm to identify likely causal genes.  

• Yang et al. Harvesting candidate genes responsible for serious adverse drug reactions 

from a chemical-protein interactome. PLoS Comput Biol (2009) vol. 5 (7) pp. 

e1000441 

 Using docking, Lan Yang et al. construct a hypothetical drug–target matrix. Within 

this matrix, they search for correlations between predicted targets and side effects. 

• Yang et al. Kinase inhibition-related adverse events predicted from in vitro kinome 

and clinical trial data. Journal of Biomedical Informatics (2010) vol. 43 (3) pp. 376-

84 

 For 20 kinase inhibitors, Xinan Yang et al. mine PubMed for associations with 71 

side effects. They then look for enrichment between the side effects and 266 kinases. 

The resulting 41 side effect–kinase pairs are benchmarked by text-mining PubMed.  

 

Review papers 

• Chiang and Butte. Data-driven methods to discover molecular determinants of serious 

adverse drug events. Clin Pharmacol Ther (2009) vol. 85 (3) pp. 259-68 

• Fliri et al. Cause-effect relationships in medicine: a protein network perspective. 

Trends in Pharmacological Sciences (2010) vol. 31 (11) pp. 547-55 
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Supplementary Figures 

  

 

Suppl. Fig. 1. Determining the minimum number of drugs per target or side effect. When 

only singletons are removed from the dataset, the distribution of best q-values per target and 

side effect is as shown above. For less than five drugs per target or side effect, there are very 

many items with non-significant q-values. These targets and side effects are therefore 

excluded from the computation. 
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Suppl. Fig. 2. Statistics of the drug–target dataset.  
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Suppl. Fig. 3. (top) When all possible proteins that could cause a side effect are considered, 

the distribution of proteins per side effect is very broad. In the lower panel, the number of 

non-metabolizing proteins with a q-value < 0.01 is counted for each side effect. As similar 

proteins are not clustered in this plot, 24% of the side effects are explained by more than ten 

proteins. (bottom) For each target, the number of potential/explained side effects and the 

number of drugs is shown. Even targets with few drugs are potentially associated with many 

targets. However, these targets can only be associated with a side effect in few cases, due to 

the missing statistical power for few samples. 
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Suppl. Fig. 4. Gene–phenotype associations from knockout mice were mapped to human 

protein–side effect pairs. In contrast to Fig. 2 of the main manuscript, related proteins were 

not combined into clusters. Of the 593 protein–side effect pairs with a q-values less than 

0.01, 62 protein–side effects pairs directly matched phenotypes in mutated mouse strains 

(10%). This is a significant enrichment over the background rate of 5% (461 exact matches 

for 10154 protein–side effect pairs, P = 6·10-10 using Fisher’s exact test). 
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Suppl. Fig. 5. Comparison with SCCA predictions. We obtained drug–protein–side effect 

modules from Mizutani et al., which had been determined by sparse canonical correlation 

analysis (SCCA). The modules contain separate weights for proteins and side effects. We 

computed a combined weight from the geometric mean of the two weights, and mapped the 

proteins and side effects to our dataset. We then analyzed the set of proteins and side effects 

that is shared between the two studies. For our predictions, lower q-values stand for higher 

confidence, whereas for the SCCA weights, higher weights designate higher confidence. (a) 

There is a weak negative correlation between q-values and SCCA weights (Pearson 

correlation: -0.26). (b) The distribution of q-values and SCCA weights is shown for protein–

side effect pairs that have been verified or not verified in three unbiased external data sets. 

The p-value of a Kolmogorov-Smirnov test is shown for the distributions of scores. (c) Here, 

the set of protein–side effect pairs is restricted to those where both a q-value and a SCCA 

weight are available.  
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Suppl. Fig. 6. Side effects per protein. For each protein, we count the number of side effects 

that are annotated or predicted to be caused by the protein. (For our predictions, we chose the 

most confident prediction per side effect.) This distribution follows a power law (i.e. a line in 

the log-log plot): There are many proteins associated with only one side effect, and a few 

with very many side effects. This can be observed for both the independent datasets and our 

predictions. 
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Suppl. Fig. 7. Q-value vs. rank for predictions. Q-values and ranks for clusters with non-

metabolizing proteins from Suppl. Table 1 are visualized. Annotations have been grouped for 

clarity.   
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Suppl. Fig. 8. Correlation between side effect incidence and binding affinity. The side 

effect hyperesthesia is most common in zolmitriptan (up to 5% of patients). It occurs 

infrequently for eletriptan and rizatripan and rarely for sumatriptan and naratriptan. We thus 

order the drugs in a ranked list. Similarly, for each target, we order the drugs according to 

their relative affinity to the two main targets HTR1B/D (see Suppl. Table 2). We assume that 

a drug’s absolute affinity for its main targets determines the therapeutic concentration and 

thus the level of off-target activity. We then compute the Pearson rank correlation between 

the two ranked lists. For example, for HTR7, zolmitriptan has the highest affinity difference 

between HTR7 and HTR1B, followed by rizatripan, eletriptan, sumatriptan and naratriptan. 

Thus, there is a good correlation between the incidence of the side effect and the relative 

affinities (Spearman rank correlation of 0.94).  
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Suppl. Fig. 9. In vitro test for activity of zolmitriptan against HTR7. Cellular activity was 

tested by Cerep, Paris (France), using the tests “5-HT7 (h) (agonist effect)” and “5-HT7 (h) 

(antagonist effect).” Human recombinant CHO cells were incubated for 45 min at 37 °C 

(Adham et al. 1998). To test for agonist effect, cAMP concentration was measured and 

compared to 10 µM serotonin. To test for antagonist effect, cells were stimulated with 

300 nM serotonin and the cAMP concentration was recorded. Thus, for antagonist response 

(blue) the plot shows how increasing concentrations of zolmitriptan decrease the signal 

elicited by serotonin. Testing for agonist response, the plot shows how increasing 

concentrations elicit and increasing HTR7 response. According to personal communication 

with Cerep representatives, activity in cellular assays can be lower by a factor of ten or more. 

The test is thus inconclusive as for the direction of the effect in mice, although it is evident 

that there is a modulation of HTR7 activity. 
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Suppl. Fig. 10. Validation against independent datasets. The plot is equivalent to the plot 

in Fig. 2A of the main manuscript, but with log-scale X-axis. 
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Suppl. Fig. 11. Q-value vs. rank for explained side effects. For each of the 732 side effects 

with q-values below 0.01, the protein with the best q-value is chosen. Proteins are then 

grouped by target class, and rank vs. q-value are plotted.  
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Supplementary Tables 

Supplementary Table 1. Annotation of predicted side effects.  

This table is included as a separate Microsoft Excel document. Clusters of protein are shown 

for two q-value cut-offs, 0.01 and 10-5, in two work sheets. 

Supplementary Table 2. Manually annotated protein–side effect relations.  

This table is included as a separate Microsoft Excel document. Note that some of the proteins 

are not drug targets, therefore this table contains more associations than reported in the main 

text.  

Supplementary Table 3. Affinities (pKi) of compounds against serotonin receptors. 

Receptor 

Drug HTR1A HTR1B HTR1D HTR1E HTR1F HTR5A HTR6 HTR7 

Eletriptan 7.35 8.00 8.94 7.25 7.99 5.82 6.28 6.70 

Sumatriptan 5.96 7.37 8.04 5.79 7.88 < 5.5 < 5.5 5.86 

Zolmitriptan 6.64 7.69 8.88 7.73 7.54 6.4 < 5.5 7.02 

Rizatriptan 6.37 6.86 7.88 6.77 6.81 5.26 < 5.5 5.73 

Naratriptan 7.12 8.09 8.41 7.69 8.18 5.47 < 5.5 < 5.5 

8-OH-DPAT 9.4 6.2 7.3 5.5 5.8 5.7  7.6 

SB-269970 < 5 6 5.8 < 5.2 < 5.5 7.2 5.2 8.9 

Affinities for triptans are taken from Napier et al. (Napier et al. 1999), for 8-OH-DPAT from 

the IUPHAR database (accessed August 20, 2010), and for SB-269970 from Lovell et al. 

(Lovell et al. 2000). 
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 Supplementary Table 4. Pain-related side effects of triptans 

 Zolmi-

triptan 

Riza-

rtiptan 

Ele-

triptan 

Nara-

triptan 

Suma-

triptan 

Atypical sensations 18% 5%  4% 6% 

Hyperesthesia 5% infreq. infreq. rare rare 

Paresthesia 10% 4% 3% 2% 3% 

Sensation warm/cold 7% frequent 2% frequent 3% 

Pain and pressure sensations 22% 9%  4% 8% 

Chest pain/sensations 4% 3% 4%  2% 

Neck/throat/jaw pain/sensations 10% 3% 2% 2% 3% 

Other pain/sensations 5% 3% 2%  3% 

For this table, data has been manually extracted from package inserts stored in the SIDER 

database (Kuhn et al. 2010). In the package inserts, chest and other upper-body pain 

sensations are often associated with cardiac symptoms.  

Supplementary Table 5. Raw data for in vivo experiments 

This table is included as a separate Microsoft Excel document. Raw data for the dynamic 

plantar and hot plate test is shown in two separate sheets. 
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