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SUMMARY

Deep sequencing now provides detailed snapshots
of ribosome occupancy on mRNAs. We leverage
these data to parameterize a computational model
of translation, keeping track of every ribosome,
tRNA, and mRNA molecule in a yeast cell. We deter-
mine the parameter regimes in which fast initiation or
high codon bias in a transgene increases protein
yield and infer the initiation rates of endogenous
Saccharomyces cerevisiae genes, which vary by
several orders of magnitude and correlate with 50

mRNA folding energies. Our model recapitulates
the previously reported 50-to-30 ramp of decreasing
ribosome densities, although our analysis shows
that this ramp is caused by rapid initiation of short
genes rather than slow codons at the start of tran-
scripts. We conclude that protein production in
healthy yeast cells is typically limited by the availabil-
ity of free ribosomes, whereas protein production
under periods of stress can sometimes be rescued
by reducing initiation or elongation rates.
INTRODUCTION

Protein translation is central to cellular life. Although individual

steps in translation such as the formation of the 43S preinitiation

complex are known in intricate molecular detail, a global under-

standing of how these steps combine to set the pace of protein

production for individual genes remains elusive (Jackson et al.,

2010; Plotkin and Kudla, 2011). Factors such as biased codon

usage, gene length, transcript abundance, and initiation rate

are all known to modulate protein synthesis (Bulmer, 1991; Cha-

mary et al., 2006; Cannarozzi et al., 2010; Tuller et al., 2010a;

Shah and Gilchrist, 2011; Plotkin and Kudla, 2011; Gingold and

Pilpel, 2011; Chu et al., 2011; Chu and von der Haar, 2012),

but how they interact with one another to collectively determine

translation rates of all transcripts in a cell is poorly understood.

Systematic measurements for some of the most critical rates—

such as the gene-specific rates of 50 UTR scanning and start

codon recognition—are extremely difficult to perform. As a
result, questions as fundamental as the relative role of initiation

versus elongation in setting the pace of protein production are

still actively debated (Kudla et al., 2009; Tuller et al., 2010a; Plot-

kin and Kudla, 2011; Gingold and Pilpel, 2011; Chu et al., 2011;

Chu and von der Haar, 2012; Ding et al., 2012). Biotechnical

applications that exploit these processes stand to gain from a

quantitative understanding of the global principles governing

protein production (Gustafsson et al., 2004; Salis et al., 2009;

Welch et al., 2009).

Recent advances in synthetic biology allow high-throughput

studies on the determinants of protein production (Kudla et al.,

2009; Welch et al., 2009; Salis et al., 2009). Sequencing tech-

niques such as ribosomal profiling provide snapshots of the

translational machinery in a cell (Ingolia et al., 2009; Reid and

Nicchitta, 2012). One way to leverage this new information is to

develop a computationally tractable model of translation in a

cell, to parameterize it from known measurements, and to use it

to infer any unknown parameters of global translation dynamics.

Here, we develop a whole-cell model of protein translation,

andwe apply it to study translation dynamics in yeast. Ourmodel

describes translation dynamics to the single-nucleotide resolu-

tion for the entire transcriptome. In combination with ribosomal

profiling data, we use our model to infer the initiation rates of

all abundant yeast transcripts. We systematically explore how

the codon usage, transcript abundance, and initiation rate of a

transgene jointly determine protein yield and cellular growth

rate. Applied to the endogenous genome, our model reproduces

one of the defining features of ribosomal profiling measure-

ments: a decrease in ribosome density with codon position.

We evaluate both elongation- and initiation-driven hypotheses

for the ramp of 50 ribosome densities. We also describe the fac-

tors that influence ribosomal pausing alongmRNAmolecules, as

well as the effects of stress on translation.

RESULTS

Model
We developed a continuous-time, discrete-state Markov model

of translation. The model tracks all ribosomes and transfer

RNA (tRNA) molecules in a cell—each of which is either freely

diffusing or bound to a specific messenger RNA (mRNA) mole-

cule at a specific codon position at any time point (Extended

Experimental Procedures). Rates of initiation and elongation
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Table 1. Summary of Model Parameters

Parameter Description Value or Range of Values References

Rt number of ribosomes 2 3 105 (Warner, 1999; von der Haar, 2008)

At number of mRNAs 6 3 104 (Zenklusen et al., 2008)

Tt number of tRNAs 3.3 3 106 (Waldron and Lacroute, 1975)

Tn number of types of tRNAs 41 (Chan and Lowe, 2009)

Ttj number of tRNAs of type j �12,000–190,000 (Chan and Lowe, 2009)

Ai number of mRNAs of type i 1–1,254 (Ingolia et al., 2009)

pi gene-specific initiation probability �3.5 3 10�6–0.115 (Experimental Procedures)

n number of genes 3,795 (Ingolia et al., 2009)

Dr diffusion coefficient of ribosomes 3 3 10�13 m2/s (Politz et al., 2003)

Dt diffusion coefficient of tRNAs 8.42 3 10�11 m2/s (Werner, 2011)

Cr size of ribosome footprint in codons 10 (Ingolia et al., 2009)

s tRNA competition coefficient 7.78 3 10�4 (Experimental Procedures)

V volume of the cell 4.2 3 10�17 m3 (Siwiak and Zielenkiewicz, 2010)

See also Table S1.
are based on physical parameters that have been experimentally

determined in yeast, including the cell volume, the abundances

of ribosomes and tRNAs, and their diffusion constants (Tables 1

and S1 available online). Transition rates among states are

parameterized in seconds so that the model describes the

dynamics of translation in real time, as opposed to using arbi-

trary discrete time steps. We provide a precise definition of the

Markov state space, as well as pseudocode and complete

source code in Data S1 and S2 and also Table S2.

Unlikemany other models of translation (Gilchrist andWagner,

2006; Mitarai et al., 2008; Reuveni et al., 2011), which treat each

mRNAmolecule in isolation and assume an inexhaustible supply

of free ribosomes that initiate themessage at a constant rate, our

model keeps track of every tRNA, mRNA, and ribosome mole-

cule in the cell simultaneously, and so it captures the indirect

effects of one gene’s translation on another’s (Figure 1). In partic-

ular, if many ribosomes are engaged in translating the mRNAs of

one gene, this reduces the pool of free ribosomes and tRNAs

available to translate other genes.

Our model makes a number of simplifying assumptions. Most

importantly, our model treats the total number of ribosomes,

tRNA molecules, and mRNA molecules in the cell as fixed quan-

tities because the dynamics of their production and decay are

typically slower than those of protein translation (Garcı́a-Martı́-

nez et al., 2004; Larson et al., 2011). We specify the total number

of ribosomes and tRNAmolecules to agree with their experimen-

tally determined values in an exponential-phase yeast cell: 2 3

105 and 3.3 3 106, respectively (Waldron and Lacroute, 1975;

Warner, 1999; von der Haar, 2008; Siwiak and Zielenkiewicz,

2010; Chu and von der Haar, 2012). We infer gene-specific initi-

ation probabilities (Extended Experimental Procedures) so that

85% of ribosomes are bound to mRNAs in equilibrium in agree-

ment with measurements in yeast (Arava et al., 2003; Zenklusen

et al., 2008). We further assume that tRNA charging is fast, which

is reasonable because 80%of all tRNAs are charged at any given

time in exponential-phase cells (Varshney et al., 1991; Jakubow-

ski and Goldman, 1992; Chu et al., 2011).
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As a result of these parameters, the equilibrium number of

free ribosomes available in the cell is typically smaller than

the number of available charged tRNAs of each species. In

this regime, we will show that protein production is generally

limited by the rate of translation initiation in the sense that

increasing the initiation probability of an mRNA molecule will

typically increase the rate at which protein is produced, but

increasing its codon elongation rates generally will not increase

production. The initiation-limited regime agrees with the long-

standing view of endogenous protein synthesis (Andersson

and Kurland, 1990; Bulmer, 1991; Eyre-Walker and Bulmer,

1993; Lackner et al., 2007; Plotkin and Kudla, 2011), but it

contrasts with other models of translation that assume an inex-

haustible supply of ribosomes, which are always available for

initiation of an mRNA regardless of how many ribosomes are

bound to other mRNAs (Mitarai et al., 2008; Reuveni et al.,

2011; Tuller et al., 2011).

We implemented our Markov model of translation using the

Gillespie algorithm. We simulated 1,500 s of translation and

extracted the final 500 s to collect data on translation dynamics

in equilibrium (Experimental Procedures). Our implementation

requires about 1,300 s of computation time to simulate all initia-

tion and elongation events in a wild-type cell for 1,500 s. In these

simulations, at equilibrium, the mean elongation rate is 9.3 aa/s

(median = 9.5 aa/s), and the mean distance between consecu-

tive bound ribosomes is 60 codons (median = 34). Both of these

quantities agree with empirical measurements in yeast (Arava

et al., 2003).

Codon Bias and Transgene Expression
Optimizing a transgene’s codon usage to the tRNA content of a

cell often improves protein yield (Gustafsson et al., 2004; Welch

et al., 2009), but the underlying mechanisms have not been

systematically explored. To study this in a quantitative model,

we simulated translation of a transgene within the context of a

Saccharomyces cerevisiae cell containing 3,795 endogenous

genes whose transcript levels and gene-specific initiation



Figure 1. A Computational Model of Protein Translation

The model tracks the status of all ribosomes, tRNAs, and mRNAs in a cell in

continuous time. At any time point, each tRNA and ribosomemolecule is either

diffusing freely in the cell or is bound to a specific mRNAmolecule at a specific

codon position. Translation initiation occurs when a free ribosome diffuses to

an mRNA and subsequently, with an mRNA-dependent probability, scans to

its start codon. The rate of elongation of each subsequent codon depends on

the abundance of free cognate tRNAs and their diffusion to the bound ribo-

some. All rates are based on experimentally determined parameters, including

the cell volume, numbers of mRNAs, total abundances of ribosomes and

tRNAs, and their diffusion constants. A precise definition of the Markov state

space, illustrative pseudocode, and the complete source code for simulation

are provided in the Supplemental Information. See also Figure S1, Tables S1

and S2, and Data S1 and S2.
probabilities were estimated from ribosomal profiling data (Ingo-

lia et al., 2009) (Experimental Procedures). By varying the codon

adaptation index (CAI) (Sharp and Li, 1987) and transcript level

of the transgene across many simulations, we delineated the

regimes for which increasing codon bias is expected to increase

protein yield and by what mechanisms.

Using the green fluorescent protein (GFP) as an example

transgene, we found that increasing the CAI of a transgene

significantly improves the rate of proteins produced per mRNA

molecule only when the transgene mRNA accounts for a sub-

stantial proportion of all the mRNA in the transcriptome (Figure 2

and Table S4). For a transgene whose messages account for

50% of the cell’s mRNA content, for example, increasing CAI

from almost zero to one results in nearly 3.6-fold more proteins

produced per transcript per second (Figure 2B, triangles),

whereas optimizing CAI in a transgene expressed at only 1%

of the transcriptome results in a more modest increase (�50%)
in its rate of protein production (Figure 2B, squares). These

results help explain the divergent views of biotechnological

studies, which often report large gains in protein production

upon optimizing transgene CAI (Gustafsson et al., 2004), and

evolutionary studies of endogenous translation, which typically

report very small effects of CAI on protein production per mes-

sage (Bulmer, 1991; Tuller et al., 2010b; Gingold and Pilpel,

2011; Plotkin and Kudla, 2011). The discrepancy arises because

transgenes are usually overexpressed and comprise a substan-

tial fraction of all cellular mRNA, whereas endogenous genes are

expressed at 1% of the transcriptome or less.

Why does codon bias strongly influence protein yield only

when a gene has high mRNA abundance? The reason has to

do with the effects of codon bias on the pool of free ribosomes,

as seen in Figure 3. At equilibrium, neglecting rare abortion

events, the rate of protein production from any given mRNA

(i.e., the rate of polypeptide termination) must equal the rate of

initiation on that mRNA, which, in turn, depends primarily on

the abundance of free ribosomes in the cell. Increasing the CAI

of a gene will increase its codon elongation rates and thus

decrease the density of ribosomes on each of its mRNAs, but

the overall effect on the pool of free ribosomes is small when

the gene accounts for a small proportion (<1%) of mRNA in the

transcriptome, as virtually all endogenous genes do. As a result,

increasing the CAI of a gene at low mRNA abundance is not

expected to strongly increase the rate of protein production, as

our simulations confirm (Figure 2). By contrast, for a transgene

at very high abundance (e.g., 50% of cellular mRNA), a signifi-

cant fraction of all ribosomes in the cell are bound to its

mRNAs. Increasing the CAI of such a gene leads to a significant

increase in the pool of free ribosomes (Figure 3) and thus a sig-

nificant increase in initiation rates and protein production from

all mRNAs in the cell, including from the transgene itself.

Our simulations confirm themechanistic role of free ribosomes

in shaping the relationship between codon bias and protein

yield. For a transgene at high abundance, such as 50% of the

transcriptome, increasing its CAI causes a 3.2-fold increase in

the equilibrium number of free ribosomes in the cell (Figure 3B),

which accounts for the great majority of the concomitant 3.6-fold

increase in its protein production. By contrast, for a transgene

expressed at low levels (e.g., 1% of transcriptome), increasing

CAI results in only 3% more free ribosomes (Figure 3B), which

is not sufficient to explain the concomitant 50% increase in

transgene protein production. (Nonetheless, a 3% fitness gain

suffices to explain selection for codon bias in highly expressed

endogenous genes over evolutionary timescales.) In this case,

the gain in transprotein production is explained instead by

reduced ribosomal trafficking at the 50 end of transgene mRNAs:

about 47% more transgene mRNAs are available to be initiated

(that is, they are not bound by a ribosome at their 50 end) when

CAI z 1 compared to CAI z 0 in our simulations of such a

transgene.

In summary, increasing transgene codon bias has a modest

effect on translational efficiency, which is limited to the trans-

gene mRNAs themselves and is caused by reduced ribosomal

occupancy of their 50 ends, whereas increasing CAI can have

a huge effect on protein production globally—which is caused

by an increased pool of free ribosomes—when the transgene
Cell 153, 1589–1601, June 20, 2013 ª2013 Elsevier Inc. 1591
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Figure 2. The Effects of Transgene Codon Bias on Protein Production

(A and B) We simulated translation in a wild-type yeast cell with the addition of a transgene. Transgene mRNA levels were set at 1%, 10%, or 50% of all cellular

mRNA. We measured the number of transproteins produced per transgene mRNA over 500 s in equilibrium (A). As (A) shows, increasing the codon bias of the

transgene generally increases the efficiency of its translation. However, when the transgene is expressed a low levels (e.g., transgene mRNAs constituting 1% of

transcriptome), then the gain in translation efficiency achieved by optimizing codon bias is moderate (�50% gain, comparing CAIz 1 to CAIz0, squares in [B]).

By contrast, when the transgenemRNAs constitute a large fraction of the total transcriptome, then the gain in translation efficiency by optimizing codon bias is far

greater (3.6-fold gain, triangles in [B]). See also Tables S3 and S4 and Figure S2.
has very high transcript abundance. These results (Figures 2

and 3) hold whenever protein translation is limited by the pool

of ribosomes freely available for initiation, as is the case in

healthy yeast cells (Arava et al., 2003; Zenklusen et al., 2008).

When a cell is starved for tRNAs or amino acids, by contrast,

or when the pool of available ribosomes is artificially inflated,

the effects of codon bias on protein yield are due solely to

reduced ribosomal interference along translating mRNAs, as

discussed below.

Whereas Figures 2 and 3 quantify translation dynamics for a

transgene expressed at three different abundances, Table S4

provides analogous results for a full range of transcript abun-

dances. In the simulations described above, we maintained a

constant transcriptome size in nucleotides so that an increase

in the abundance of transgene mRNA comes at the expense

of endogenous transcripts. Nonetheless, we found the same

results when transgene mRNAs were simply added to the

endogenous transcriptome (Table S4 and Experimental Proce-

dures). Likewise, we found the same qualitative results for three

other simulated transgenes with very different sequences and

amino acid compositions than GFP (Table S4). Whereas Figure 2

reports the rate of protein production per transgenemRNAmole-

cule, Table S4 reports the corresponding total rate of transpro-

tein production in the cell, which is often the most important

consideration in biotechnical applications. Most of the relation-

ships between codon bias and protein yield per message also

hold for total protein yield.
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Initiation Rate and Transgene Expression
Translation initiation in eukaryotes is a multistep process

involving multiple protein complexes. Our model simplifies this

process into its two critical components: the arrival of a free

ribosome at the 50 end of an mRNA molecule, whose rate is

determined by the number of free ribosomes and their diffusion

constant, and the probability that such a ribosome then success-

fully binds and scans to the start site of the mRNA to irreversibly

initiate translation. This initiation probability is known to depend

strongly on the sequence of the transcript (Andersson and

Kurland, 1990; de Smit and van Duin, 1990; Eyre-Walker and

Bulmer, 1993; Kudla et al., 2009; Tuller et al., 2010b). In the sim-

ulations above, we set the initiation probability of the transgene

at the 95th percentile of endogenous initiation probabilities

because transgenes are typically optimized for rapid initiation

(Salis et al., 2009; Welch et al., 2009). Here, we explore more

generally how the probability of transgene initiation, once a ribo-

some has diffused to a transgene mRNA, influences protein

production.

As Figure 4A shows, high codon bias will significantly increase

protein yield only when the initiation probability of a transgene

exceeds the (abundance-weighted) average initiation probability

of the endogenous transcriptome. This is true irrespective of

transgene abundance (Table S4), and it makes intuitive sense

by considering, once again, the effects of initiation and elonga-

tion on the pool of free ribosomes. Increasing a gene’s codon

bias typically reduces the density of ribosomes along its mRNA
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Figure 3. The Effects of Transgene Codon Bias on the Pool of Free Ribosomes

(A andB) As in Figure 2, we simulated translation of a transgene added to awild-type yeast cell. TransgenemRNA levels were set at 1%, 10%, or 50%of all cellular

mRNA. We measured the equilibrium fraction of ribosomes that are free (unbound). Increasing codon bias of the transgene reduces the number of ribosomes

bound to its transcripts and thereby increases the pool of free ribosomes (A), especially when the transgene accounts for a large proportion of all cellular mRNA.

For example, when transgene mRNAs comprise 50% of the total transcriptome, then optimizing codon bias of the transgene from CAIz 0 to CAIz 1 causes a

3.2-fold increase in the number of free ribosomes (triangles in [B]), which explains a large proportion of the corresponding gain in transprotein production. See

also Table S4.
molecules due to faster elongation. When a highly expressed

transgene has high initiation probability, its ribosomal density

will be high as well, and so increasing codon bias can sub-

stantially replenish the pool of free ribosomes, which, in turn,

increases initiation rates and protein yields. However, when a

transgene has low initiation probability, regardless of its mRNA

abundance, there are relatively few ribosomes bound to its

mRNAs, and so increasing codon bias has a limited effect on

its ribosomal densities and on the pool of free ribosomes (Fig-

ure 4B and Table S4). These results underscore the critical role

of rapid initiation in allowing codon bias to modulate transgene

protein yields.

Initiation Probabilities of Endogenous Genes
One of the most challenging problems in understanding protein

translation remains the estimation of initiation rates for endoge-

nous genes. As described above, translation initiation depends

first on the arrival of a free ribosome to an mRNA and then on

the ribosome binding and successfully scanning to the tran-

script’s start codon (de Smit and van Duin, 1990). Despite their

importance, the initiation probabilities of each transcript are

the only parameters in our model that have not been measured

empirically. Therefore, we used our model to infer the gene-

specific initiation probabilities from ribosomal occupancy data

(Ingolia et al., 2009).

To make this inference, we assumed that the cell is in equilib-

rium, and we derived analytic approximations for the steady-
state density of ribosomes on each mRNA molecule (Extended

Experimental Procedures) in terms of the unknown initiation

probabilities. These approximations neglect the possibility of

ribosomal interference along each message, but they are none-

theless extremely accurate in the parameter regime of a healthy

yeast cell (R > 0.9; Figures S1A and S1B). We then inverted our

equations to infer gene-specific initiation probabilities from

observed densities of ribosomes on transcripts. An alternative

method of estimating initiation probabilities from profiling data

was independently developed by Siwiak and Zielenkiewicz

(2010). We validated that our analytical method can indeed

reliably infer initiation probabilities when we simulate ribosome

profiling data for S. cerevisiae genes with known initiation prob-

abilities (Figure S1B). Using this method, we inferred the initiation

probabilities for the 3,795 S. cerevisiae genes whose ribosomal

densities have been reliably measured (Ingolia et al., 2009).

The initiation probabilities we inferred for yeast genes vary by

many orders of magnitude. According to these estimates, the

average time between initiation events on a given mRNA mole-

cule ranges from 4 s (fifth percentile) to 233 s (95th percentile),

with a median value of 40 s. This variation provides the cell

considerable range for tuning protein levels by modulating initia-

tion probabilities of genes.

Experimentswith individual genes (Hall et al., 1982; Duan et al.,

2003) andwith large sets of coding sequences (Kudla et al., 2009)

suggest that strong 50 mRNA structure reduces the rate of initi-

ation, presumably by obstructing ribosomal-mRNA binding.
Cell 153, 1589–1601, June 20, 2013 ª2013 Elsevier Inc. 1593
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Figure 4. The Effects of Initiation Probabilities on Protein Production and Pool of Free Ribosomes

(A and B) As in Figure 2, we simulated translation of a transgene added to a wild-type yeast cell. TransgenemRNA levels were set at 25% of all cellular mRNA.We

measured the number of transgene proteins produced per transgene mRNA (A), as well as the equilibrium fraction of ribosomes that are free (B); both quantities

are expressed relative to the case of transgene with CAI z 0. The dashed vertical line denotes the average initiation probability of endogenous yeast genes.

Increasing codon bias of a transgene significantly increases the rate of protein production only when the transgene’s initiation probability exceeds the average

initiation probability of endogenous genes. See also Table S4 and Figure S2.
Using a large set of synthetic GFP genes that vary synony-

mously, we confirmed experimentally that 50 mRNA folding plays

a predominant role in determining protein levels in S. cerevisiae

(Figure S2), which is similar to the role it plays in Escherichia

coli (Kudla et al., 2009). In light of these experiments, we

compared the initiation probabilities we estimated for 3,795

endogenous yeast genes with their predicted 50 mRNA folding

energies (nucleotides �4 to +37, Experimental Procedures) and

found a strong positive correlation (Pearson correlation R =

0.125 and p < 10�13; Figure 5A). These results suggest that 50

mRNA structure systematically modulates initiation rates across

the yeast genome.

Interestingly, we also found a negative correlation between

initiation probability and open reading frame (ORF) length

(R = �0.56 and p < 10�15; Figure 5B), even after controlling for

mRNA expression level (partial correlation, R = �0.425 and

p < 10�15). This trend suggests that shorter yeast genes have

experienced selection for faster initiation, and so it provides a

mechanistic explanation for the greater density of ribosomes

typically observed on short genes (Arava et al., 2003; Lackner

et al., 2007). Note that shorter genes are known to be more

densely packed with ribosomes despite the fact that they tend

to have significantly higher CAI (t test, p < 10�4) and presumably

faster elongation. This result again indicates the dominance of

initiation, as opposed to elongation, in determining the density

of ribosomes on transcripts.

We performed several controls to ensure that our estimates of

initiation probabilities are not biased by gene length (Extended
1594 Cell 153, 1589–1601, June 20, 2013 ª2013 Elsevier Inc.
Experimental Procedures). We found no significant differences

in the inferred initiation probabilities when artificially doubling

the lengths of all transcripts (Kolmogorov-Smirnov, p > 0.9).

Moreover, we validated that we can reliably infer initiation prob-

abilities from simulated ribosomal profiling data even when gene

length and initiation probabilities are positively correlated (Fig-

ures S1C and S1D and Extended Experimental Procedures),

indicating that the negative correlation observed in the real yeast

data is not an artifact of our inference procedure.

Why should short genes experience selection for fast initia-

tion? Short genes are enriched for constitutively expressed

housekeeping and ribosomal genes (Hurowitz and Brown,

2003), which must produce protein as rapidly as possible. In

addition, housekeeping genes tend to have shorter 50 UTRs

and are under weaker posttranscriptional regulation (Hurowitz

and Brown, 2003; Lin and Li, 2012). The probability of successful

ribosomal binding and scanning on an mRNA may depend on

the length of its 50 UTRs; indeed, we find that genes with

shorter 50 UTRs exhibit higher inferred initiation probabilities

(p < 10�10). In addition to de novo initiation, recently terminated

ribosomes can reinitiate translation on the same mRNA, a pro-

cess known as ribosome recycling. The probability of successful

reinitiation may depend on an mRNA’s 30 UTR length (Tanguay

and Gallie, 1996; Gallie, 1998). Consistent with this hypothesis,

we find genes with longer 30 UTRs have higher initiation probabil-

ities (p < 10�5). However, unlike 50 folding energy, we find no

significant correlation between 30 UTR folding energy and the

initiation probability of a gene.
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Figure 5. Fast Initiation of Short Genes Causes a 50 Ribosomal Ramp

(A) Yeast genes with weak 50 mRNA structure initiate quickly. We inferred the initiation probabilities of 3,795 endogenous yeast genes from ribosomal profiling

data (Ingolia et al., 2009). A gene’s initiation probability correlates strongly with the estimated energy of its 50 mRNA structure. The gray bars indicate 1 SD of

folding energies of binned genes.

(B) Initiation probabilities of yeast genes also correlate with ORF lengths, suggesting that short genes have experienced selection for faster initiation.

(C) Simulations of translation in a wild-type yeast cell recapitulate the ‘‘ramp’’ of 50 ribosomes observed in empirical ribosomal profiling data (Ingolia et al., 2009).

The figure shows the density of ribosomes bound to mRNAs as a function of codon position, averaged across the simulated transcriptome (black). The ramp is

preserved in simulations that permute the codonswithin each gene (blue), but the ramp is disrupted when permuting the initiation probabilities among genes (red).

Thus, we infer that the ramp of 50 ribosomes is caused primarily by the trend toward faster initiation in short genes, rather than by the ordering of codons within

each gene.

See also Figures S3, S4, and S5.
The ‘‘Ramp’’ of 50 Ribosomes
A defining feature of ribosome profiling data in yeast (Ingolia

et al., 2009) and humans (Reid and Nicchitta, 2012) is a striking

decrease in ribosome density with codon position, averaged

across the transcriptome. This observation has led to the

‘‘ramp’’ hypothesis, which attributes higher ribosome densities

to slower codons in the 50 ends of mRNAs (Tuller et al., 2010a;
Reuveni et al., 2011; Tuller et al., 2011). Slow 50 codons are

thought to reduce ribosomal interference further down the length

of the mRNA, leading to more efficient translation (Tuller et al.,

2010a).

Our simulations of translation in a yeast cell recapitulate the

empirical observation of declining ribosome density with codon

position, averaged across the transcriptome (Figure 5C). The
Cell 153, 1589–1601, June 20, 2013 ª2013 Elsevier Inc. 1595



ability of our model to recapitulate this striking spatial trend is

nontrivial because we did not use any position-specific informa-

tion from the ribosomal profiling data in order to parameterize the

model (we used only the average ribosome density per mRNA).

Our computational model allows us to systematically deter-

mine which processes are responsible and which ones are

dispensable in explaining the 50-to-30 ramp of decreasing ribo-

some density. We propose an alternate explanation for this

trend: the ramp can be explained by the simple fact that shorter

yeast genes tend to have higher initiation probabilities (Figure 5B)

and correspondingly higher densities of ribosomes overall (Arava

et al., 2003; Lackner et al., 2007). Because short genes are dis-

proportionally weighted in early codon positions as opposed to

late codon positions, their elevated ribosome densitieswill cause

an apparent ramp in the transcriptome-wide average ribosome

density with codon position.

We used our model to distinguish between our initiation-driven

hypothesis and the elongation-driven hypothesis for the ramp of

50 ribosomes (Tuller et al., 2010a, 2011; Reuveni et al., 2011). If

the ramp were caused primarily by slow codons near the 50

ends of genes, then the ramp would disappear upon random-

izing codon order within each gene, whereas if the ramp were

caused primarily by faster initiation rates in shorter genes, then

it would disappear upon permuting initiation rates among genes.

We found that simulations permuting codon order within genes

still exhibit the ramp of 50 ribosome densities (Figure 5C),

whereas permuting initiation probabilities among genes removes

the ramp (Figure 5C). Both of these results support the initiation-

driven and reject the elongation-driven hypothesis for the cause

of the 50 ribosome ramp.

Aside from using our simulation model, we can also analyze

the raw ribosomal profiling data of Ingolia et al. (2009) to dissect

the causes of the apparent 50 ribosome ramp. When we remove

all positional information from the profiling data and use only the

observed average ribosome density on each mRNA, assuming a

uniform density along each mRNA, we still observe a decline in

transcriptome-wide average ribosome density with codon posi-

tion (Figure S3A). In addition, when inspecting the profiling data

on a gene-by-gene basis, we find that just asmany genes exhibit

a trend of increasing ribosome density as exhibit a trend of

decreasing ribosome density (Figure S3B and Extended Experi-

mental Procedures). Finally, we have plotted average ribosome

density by codon position for genes binned byORF length, which

is analogous to Figure S11 from Ingolia et al. (2009) but withmore

stringent length bins (Figure S4). These plots show no consistent

50-to-30 ramp, and many show 30-to-50 ramps (Figure S4). Taken

together, these analyses of the raw profiling data confirm the

conclusions drawn from our simulations: the apparent 50 ribo-
some ramp in yeast is not caused primarily by a higher density

of ribosomes near the 50 end of each message but rather by a

greater overall density of ribosomes on shorter mRNAmolecules

due to their faster rates of initiation.

Comparison to Other Models of Translation
Several models of translation, such as the ribosome flow model

and other TASEP-based models, have been used to justify the

role of codon ordering in determining spatial patterns of ribo-

somes along mRNAs (Reuveni et al., 2011; Tuller et al., 2011).
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Such models of translation consider each mRNA in isolation of

all others, assuming a constant rate of initiation. In other words,

TASEP models implicitly assume a constant, inexhaustible sup-

ply of free ribosomes and free tRNAs in the cell, so that the 50 end
of each mRNA is typically saturated with ribosomes (Reuveni

et al., 2011), and the speed of elongation then sets the pace

of protein production. Such models make sense only if ribo-

somes are in overabundance in the cell. As a result, the total

number of ribosomes bound to mRNAs estimated by such

models (>53 105, Extended Experimental Procedures) exceeds

the empirical measurement of the total number of ribosomes in a

yeast cell (1.873 105 ± 5.63 104; von der Haar, 2008) by a factor

of 2.5.

When we artificially increase the number of ribosomes and

tRNAs in our simulations beyond their empirically measured

abundances, we can recapitulate the patterns produced by

TASEP models of translation (Figure S5A). In this regime, which

we argue is unrealistic, we still observe a decrease in the average

ribosome density with codon position, but this ramp is caused by

collisions along each mRNA, and it persists regardless of gene-

specific initiation probabilities or codon ordering within genes

(Figure S5B). Thus, models of translation in both initiation- and

elongation-limited regimes produce similar global patterns of

ribosomal densities with codon position but for entirely different

and contradictorymechanisms. Only the initiation-limited regime

is consistent with empirical measurements of ribosome abun-

dances in the yeast cell.

Ribosomal Interference and Codon Usage
Our simulations allow us to estimate the amount of time a ribo-

some spends waiting for a tRNA at each codon position, called

ribosomal pausing, and also the amount of time a ribosome

wastes at any position due to interference by an adjacent down-

stream ribosome that prevents further elongation, called ribo-

somal stalling. We identified the sequence features of a gene

that predispose it to ribosomal pausing or stalling (Experimental

Procedures).

Using GFP as an example transgene simulated at 50%mRNA

transcriptome abundance, we found that increasing the trans-

gene’s codon bias tends to decrease the overall density of ribo-

somes on its mRNAs, as well as the frequency of ribosomal

stalling (Figure 6). For a transgene with high CAI, the probability

of finding a ribosome bound at a given codon is negatively corre-

lated with the abundance of corresponding iso-accepting tRNAs

(Pearson correlation, R = �0.802), but this correlation is much

weaker for a transgene with low CAI (R = 0.042 and p > 0.05).

In other words, the waiting time per codon is largely determined

by the abundance of corresponding tRNAs for a gene with high

CAI. But for a gene with low CAI, ribosomes densities are higher

overall and so the waiting time at each codon is also influenced

by interference with downstream ribosomes and, therefore, is

not easily predicted from tRNA abundances. In fact, regardless

of CAI, there is a strong correlation between ribosomal stalling

at a position and the probability of ribosomal pausing 10 codons

downstream (R = 0.958 for high CAI and R = 0.644 for low CAI).

Because the probability of pausing in a high-CAI transgene

sequence is correlated with tRNA abundances, it is possible to

predict the positions of ribosomal stalling from the transgene



0.
6

0.
4

0.
2

0
0.

02
0.

04
0.

06

Fraction of bound ribosomses at pos=x-10 that are stalled

Probability of bound ribosome at pos=x

Lo
w

 C
A

I

A

0 50 100 150 200

0.
6

0.
4

0.
2

0
0.

02
0.

04
0.

06

H
ig

h 
C

A
I

Codon position

B

Figure 6. Codon Usage and Ribosomal

Pausing and Stalling

(A and B) The influence of codon usage and amino

acid sequence on ribosomal pausing and stalling

for a simulated transgene with either (A) low or (B)

high codon adaptation, expressed at 50% tran-

script abundance. Gray bars indicate the proba-

bility of finding a ribosome bound at a given codon

position x, and black bars indicate the probability

of finding a ribosome stalled at position x-10 (i.e., a

ribosome whose further elongation is obstructed

by another ribosome). High codon adaptation

reduces both ribosome density and ribosome

interference. The probability of a ribosome stalling

at a position correlates strongly with the proba-

bility of a ribosome pausing 10 positions ahead

(R = 0.947 for high CAI and R = 0.644 for low CAI).

For a transgene with high CAI, the probability of

finding a ribosome bound at a given codon posi-

tion is strongly anticorrelated with the abundance

of iso-accepting tRNAs for that codon (R = 0.786),

but not for a transgene with low CAI (R = �0.042).
sequence alone. Understanding the effects of amino acid and

codon usage on pausing and stalling may prove useful in

designing transgene sequences to minimize ribosomal interfer-

ence on its mRNAs.

Protein Translation under Stress
The simulations of translation described above were performed

under parameters of optimal cell growth. Translation dynamics

likely differ when a cell experiences stress. To investigate how

protein production is affected by stress and how a cell might

adapt in response, we simulated translation under conditions

of amino acid starvation. We modeled starvation of a particular

amino acid by reducing the abundance of its (charged) cognate

tRNAs by either 2-, 5-, or 10-fold. As expected, we found that the

rate of total protein production decreases under stress (Figures

7A and S6A). Furthermore, starvation of different amino acids

can have radically different effects on protein production. For

example, 10-fold starvation of amino acids Ala, Leu, Glu, Gln,

or Ser decreases total protein production by at least 10-fold,

whereas an equivalent starvation of Met, Trp, or His reduces pro-

tein production by less than 25% (Figure 7A). As expected, the

effect of starvation of a particular amino acid is significantly

correlated with its abundance encoded in the transcriptome

(p < 0.01 in all cases).

Our simulations reveal that decreased protein synthesis upon

starvation is caused primarily by a decrease in the pool of free

ribosomes (Figures S6A and S6B). When tRNAs corresponding

to a specific amino acid are in short supply, elongation of their

codons becomes rate limiting, as has been predicted theoreti-

cally (Elf et al., 2003) and observed experimentally (Welch

et al., 2009). As our simulations demonstrate, this effect creates

traffic jams that increase the density of ribosomes on all mRNAs

and increase the fraction of bound ribosomes that are stalled

(Figure S6D). The increased density of bound ribosomes in turn

decreases the pool of free tRNAs of all species, as each bound

ribosome sequesters one tRNA in its P site. At equilibrium, the
limited pool of free ribosomes and tRNAs reduces the initiation

and elongation rates of all transcripts (Figure S6C) and hence

retards total protein production.

Eukaryotic cells have evolved mechanisms to cope with

stress, which we can analyze mechanistically using our model

of translation. During amino acid starvation, eukaryotic cells

respond (1) by repressing the production of ribosomal proteins

and rRNAs (Moehle and Hinnebusch, 1991) and (2) by phosphor-

ylating eIF2a by GCN2, which retards the formation of initiation

complexes (Krishnamoorthy et al., 2001; Zhang et al., 2002; Hin-

nebusch and Lorsch, 2012). In order to study these adaptive

responses, we simulated the repression of ribosomes by

reducing the total number of ribosomes in the cell, and we

simulated the phosphorylation of eIF2a by reducing the initiation

probabilities of all genes by a fixed factor. Under mild stress

conditions (2- to 5-fold decrease in charged tRNAs), reducing

either the ribosome abundance or initiation probabilities was

detrimental to protein production (Figure S7 and Table S5). How-

ever, when the cell experiences severe amino acid starvation,

reducing ribosome abundance or initiation probabilities can

partly rescue protein production (Figures 7B and S7 and

Table S5). This increase in protein production, albeit not to

the levels of the wild-type cell, is quite significant. This counter-

intuitive behavior can be explained by the fact that, under

severe stress conditions, the cell becomes elongation limited

instead of initiation limited. As a result, reducing the initiation

rates of genes not only increases the pool of free ribosomes

(Table S5) but also the pool of free tRNAs, especially the ones

corresponding to the starved amino acid. This leads to an

increase in the elongation rate of all genes and, hence, overall

protein production.

Stress-induced repression of ribosomes and phosphorylation

of eIF2a have previously been thought to be adaptive because

they minimize resource waste. Our simulations indicate that

such responses may also have a direct benefit of rescuing pro-

tein production and therefore increasing cell growth.
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B Figure 7. The Effects of Amino Acid Star-

vation and Cellular Stress Response on

Protein Production

(A) For each amino acid, we reduced the relative

abundance of its (charged) cognate tRNAs by

either 2-, 5-, or 10-fold and then simulated trans-

lation in the cell. Although a stronger stress always

leads to lower protein production, the strength of

this effect varies widely among amino acids.

(B) During starvation, cells often respond by re-

pressing ribosome production, which we modeled

by reducing the total number of ribosomes in the

cell and resimulating translation. Reducing ribo-

somes under normal or mild stress conditions

always reduces protein production. However,

during severe stress, reducing ribosomes by a

moderate amount can partly rescue protein pro-

duction, as in the case of serine shown in (B).

See also Figures S6 and S7 and Table S5.
DISCUSSION

We have used a whole-cell simulation model to study the

dynamics of translation. This approach allows us to map the

parameter regimes in which high codon adaptation is expected

to increase transgene protein yield and by what mechanisms—

revealing the critical role of free ribosomes in constraining initi-

ation and protein production. This approach also elucidates

the basic determinants of translation dynamics in the endoge-

nous yeast transcriptome, providing estimates of initiation

probabilities for all abundant yeast mRNAs. We have found a

strong correlation between ORF length and initiation proba-

bility, which, we argue, provides a simple explanation for the

apparent ramp of 50 ribosome densities observed in ribosomal

profiling data.

Whether endogenous protein production is initiation or elon-

gation limited remains actively debated (Gingold and Pilpel,

2011; Plotkin and Kudla, 2011). It cannot easily be determined

a priori which process should be limiting because the cellular

abundances of some tRNA species are comparable to the abun-

dance of ribosomes. Nonetheless, a long string of early experi-

ments by Andersson and others established the empirical fact

that initiation limits production for most endogenous proteins

in healthy cells (Andersson and Kurland, 1990; Bulmer, 1991).

Our simulations—and especially our results on how slow codons

in an abundantmRNA retard protein production by depleting free

ribosomes (Figure 2)—confirm and quantify the longstanding

initiation-limited view of protein synthesis. Moreover, from an

evolutionary perspective, it makes more sense for a cell to err

on the side of producing a slight excess of tRNAs as opposed

to an excess of ribosomes because ribosomes are much more

costly to synthesize than tRNAs. Finally, it is important to note

that the TASEP-based models of translation (e.g., Reuveni

et al., 2011) cannot, even in principle, be used to assess whether

protein production is limited by available ribosomes because

such models assume a fixed, inexhaustible supply of free ribo-

somes. Nor can such models, which treat each mRNA molecule

independently, assess how the codon usage of a transgene influ-
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ences the pool of free ribosomes in a cell and thus feeds back to

alter initiation rates of all transcripts and cell growth.

Although our simulations allow us to quantify translation

dynamics in a cell, our model makes many simplifying assump-

tions, asmentioned previously. For instance, we assume that the

total numbers of ribosomes, tRNAs, and mRNAs remain con-

stant, which we have argued is a reasonable approximation

based on empirical data (Garcı́a-Martı́nez et al., 2004; Larson

et al., 2011). Nonetheless, spatial heterogeneities in the distribu-

tions of tRNAs, mRNAs, and ribosomes (Reid and Nicchitta,

2012; Qian et al., 2012), which our model neglects, could modu-

late the effective diffusion constants of those molecules. We

have also assumed that, upon elongation, a free tRNA is instantly

recharged and available for further translation. Although this

assumption is clearly violated in reality, tRNA charging is gener-

ally thought not to limit protein production, with about 80% of all

tRNAs charged at all times due to strong negative feedback on

aminoacyl synthetases (Varshney et al., 1991; Jakubowski and

Goldman, 1992; Chu et al., 2011) (but see Brackley et al. [2011]

and Qian et al. [2012]). Nonetheless, in conditions of amino

acid starvation, the availability of charged tRNAs may become

a limiting factor in protein production (Elf et al., 2003; Welch

et al., 2009), as reflected by our simulations of translation under

stress.

Our model also ignores the details of termination, as well as

translation errors. Although missense errors do not affect overall

protein yield or the pool of free ribosomes, such errors can

reduce the amount of ‘‘functional’’ protein produced or even pro-

duce detrimental, misfolded protein products (Drummond and

Wilke, 2008, 2009). Systematically predicting which mutations

will cause nonfunctional or deleterious protein folds is not

feasible, but nonetheless, mistranslation remains a strong force

of selection on codon usage over evolutionary timescales (Drum-

mond and Wilke, 2008, 2009). By contrast, premature termina-

tion or nonsense errors affect both protein yield and the pool

of free ribosomes. Because the probability of a nonsense error

at a codon is inversely proportional to the amount of tRNAs avail-

able (Gilchrist, 2007; Shah and Gilchrist, 2010), incorporating



nonsense errors into our model would tend to exaggerate the

effects of CAI and mRNA abundance on protein yield.

Aside from the systematic processes described above, our

model also neglects a host of other sequence-specific features

that are known to influence protein production and cellular

fitness in specific cases, such as cotranslational requirements

for ribosomal pausing (Kimchi-Sarfaty et al., 2007), internal

mRNA structures that may retard elongation (Tuller et al.,

2010b), synonymous codons required for proper splicing (Cha-

mary et al., 2006), the effects of tRNA isoforms, neighboring

codon interactions, and the recently discovered rRNA-mRNA

interactions that operate in E. coli, but not in yeast (Li et al.,

2012). Although each of these effects has been observed in a

few empirical cases, it is difficult to predict when they will

operate and what consequences they will have in general.

Like all models, our model of translation should be particularly

useful when it fails to match measurements of protein produc-

tion for individual transcripts, indicating the action of some

factor missing from the model that influences the transla-

tion of a particular gene. Nonetheless, these types of highly

sequence-specific factors are unlikely to alter the general

conclusions we have drawn from our model, such as the pre-

dominant role of free ribosomes in setting the overall pace of

translation and the role of initiation rates in causing a ramp of

50 ribosome densities.

EXPERIMENTAL PROCEDURES

S. cerevisiae Transcriptome

To define the mRNA transcriptome, we selected the 3,795 genes from

S. cerevisiae (S288c June 6, 2008 release; Cherry et al., 2012) for which Ingolia

et al. (2009) obtained reliable estimates of average ribosomal densities. We

fixed the total number of mRNAs to 60,000 (Zenklusen et al., 2008) and

sampled mRNAs based on the relative abundances measured by Ingolia

et al. (2009), ensuring that each gene had at least one mRNA represented in

the transcriptome. mRNA abundances ranged from 1 to 1,254 molecules per

gene (Tables 1 and S1). The (mRNA) transcriptome size was then defined as

the total number of nucleotides comprised by the 60,000 mRNA molecules.

Generating Transgenes with Various CAI Values

Wegenerated nucleotide sequences of GFP and other transgenes with various

different CAI values. To produce a specified CAI value, we calculated relative

synonymous codon usage (RSCU) in S. cerevisiae from 134 ribosomal genes

(Table S3) (Sharp and Li, 1987). We then sampled codons based on RSCU.

There are typically many nucleotide sequences with the same, or very similar,

CAI values. Thus, for each simulation involving transgenes, we used ten

sequences of similar CAI values and equal mRNA abundances to represent

the transgene, in order to alleviate noisy, sequence-specific effects.

Calculating 50 Folding Energy

Coding sequences and UTRs for S. cerevisiae were downloaded from

Ensemble (http://www.ensemblgenomes.org). We removed sequences with

lengths not equal to a multiple of three, with premature stop codons, or with

a continuous string of >3 ambiguous N symbols. We used RNAfold (Hofacker

et al., 1994) to estimate the mRNA folding energy from base �4 to 37 for each

gene, using default parameters.

Estimating Ribosomal Interference

To identify regions of ribosomal pausing and interference on a transgene

sequence, we simulated translation in the cell with a transgene accounting

for 50% of the (mRNA) transcriptome. We ran the simulation for 500 s in

equilibrium and sampled the state of the system every second. We used

the average number of ribosomes bound at each position to quantify the
frequency of ribosomal pausing. To quantify the frequency of ribosomal

stalling, we calculated the fraction of bound ribosomes at a position that

also have another bound ribosome ten codons (positions) ahead on that

mRNA in the same time sample.
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Supplemental Information

EXTENDED EXPERIMENTAL PROCEDURES

Simulation Model
Wedescribe protein translation using a discrete-state continuous-timeMarkovmodel of initiation, elongation, and termination events

in a cell. Themodel assumes a fixed total number of ribosomes and tRNAs, and it describes how these entities initiate and elongate a

fixed supply of mRNAs. Our model neglects the dynamics of transcription, mRNA decay, and co-transcriptional translation; it also

neglects the production and decay of ribosomes and tRNAs themselves. These processes are typically slower than the dynamics

of translation, and so our model nonetheless provides an accurate description of translation in a cell in most conditions.

We assume a genome comprised of n genes, each with a prescribed coding sequence, and each with a fixed abundance Ai, of

mRNA copies in the cell. Gene i encodes an mRNA of length Li codons; each such codon is assigned one of k possible values

(k = 61 in the standard genetic code). Each gene i also has a corresponding probability of translation initiation, denoted pi, which

is described below.

Corresponding to each type of codon j is one of 41 iso-accepting tRNA species, denoted fðjÞ, which has a fixed total abundance

Tt
fðjÞ in the cell. At any time in our Markov model, each molecule of tRNA species fðjÞ is either free in the cell, or bound, along with a

ribosome, to some codon of type j in some mRNA in the cell. Thus, at each time, the total number of tRNAs of type fðjÞ can be

decomposed into those that are currently bound and those that are currently free: Tt
fðjÞ = Tb

fðjÞ +Tf
fðjÞ. Likewise, the total number of

ribosomes, Rt, can be decomposed into bound and free: Rt =Rb +Rf . Moreover, the number of bound ribosomes always equals

the total number of bound tRNAs of all species: Rb =
P41

k = 1T
b
k .

In our continuous-time Markov model, initiation and elongation events occur at rates that are determined by the current state of

system (the number of free ribosomes, and the locations of all bound ribosomes) and by the underlying physical parameters of

the cell. The underlying physical parameters are simply the volume of the cell, and the characteristic lengths and diffusion constants

of ribosomes and tRNAmolecules. The time between subsequent events are exponentially distributed, and Monte Carlo simulations

proceed simply by incrementing time according to exponential deviates and re-computing rates of subsequent events (Gillespie,

1977). We provide the model source code, and associated datasets used in the current simulations as a supplement (Data S1). Addi-

tionally, the latest version of the code is also made freely available at http://mathbio.sas.upenn.edu/shah-cell-2013-code.tar.gz.

Diffusion of Ribosomes and tRNAs

We compute initiation and elongation rates by considering the diffusion of ribosome and tRNA molecules in the cell. Assuming a

spherical cell of volume V = 4:2310�17 m3 (Jorgensen et al., 2002), the number of different discrete positions that can be occupied

by any molecule is N=V=l3, where l is the characteristic length of the molecule. The characteristic lengths of tRNA and ribosomes

have beenmeasured as lt = 1:5310�8 m and lr = 3310�8 m, respectively (Nissen et al., 1999; Politz et al., 2003). Thus, the number of

available discrete positions for tRNA and ribosome molecules are Nt = 1:243107 and Nr = 1:563106, respectively.

The average time required for any given molecule to move from one position in the cell to another, known as the characteristic time

t, is given by

t =
l2

6D
(1)

where D is the diffusion coefficient of the molecule. The diffusion coefficients of tRNAs and ribosomes are known,

Dt = 8:42310�11 m2/s and Dr = 3310�13 m2/s (Politz et al., 2003; Werner, 2011), and hence their characteristic times are

tt = 4:45310�7 s and tr = 5310�4 s, respectively. The characteristic times allow us to compute the rate at which a free ribosome

ormRNAmolecule reaches any particular position in the cell. In particular, if there areN positions that can be occupied by amolecule,

then a given molecule with characteristic time twill reach a particular position in the cell at rate 1=tN. For example, if there are Rf free

ribosomes, then the rate at which any free ribosome reaches a given mRNA molecule is simply Rf=tNr .

Translation Initiation Rates

Given the current state of the system (the number of free ribosomes, and the locations of all bound ribosomes), each mRNA of type i

will be initiated at rate ri. The rate ri is set to zero if any of the first 10 codons of the mRNA is currently bound by a ribosome. Other-

wise, the rate is

ri =pi

Rf

tNr

:

The term Rf=tNr in this equation denotes the rate at which any free ribosome diffuses to a given mRNA molecule. And the term

pi denotes the initial probability of an mRNA of type i: the chance that a ribosome will actually initiate translation of such an

mRNA molecule, once it has diffused to its 50 end. The parameters pi allow us to account for sequence-specific variation in initiation

probabilities among genes (Kudla et al., 2009).

Translation Elongation Rates

Any given ribosome currently bound to somemRNAwill elongate at some rate. Consider a ribosome bound at codon position k on an

mRNA. Its rate of elongation is set to zero if any of the following k + 10 codons of the mRNA are currently occupied by another ribo-

some, because of interference. Otherwise, the rate at which the ribosome elongates the subsequent codon, of type j, depends on the
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number of free cognate tRNAs for that codon Tf
fðjÞ and the wobble parameter associated with the tRNA-codon pair wj. If there is a

perfect match between the tRNA and the codon, then wj = 1. Else wry=yr = 0:64 if the mismatch is due to a purine-pyrimidine wobble

or wrr=yy = 0:61 if the mismatch is due to purine-purine or pyrimidine-pyrimidine wobble (Curran and Yarus, 1989; Lim and Curran,

2001). The rate at which a cognate tRNA elongates to the codon at position k + 1 is thus given by

Tf
fðjÞwj

ttNt

In addition, during elongation various tRNAs compete for the focal ribosome. The ribosome thus spends a considerable amount of

time checking whether a given tRNA in its A-site is in fact a cognate tRNA for the codon it is about to elongate. The time spent by the

ribosome in selecting the cognate tRNA depends on the relative abundances of various tRNAs as well as organism specific kinetic

rates associated with ribosomal proofreading. Because these kinetic rates are not available for yeast, we use the values obtained in

Escherichia coli (Fluitt et al., 2007; Gromadski and Rodnina, 2004). Using these parameters and tRNA abundances in yeast, we used

numerical simulations described in Fluitt et al. (2007) to estimate the average time spent by the ribosome in kinetic proofreading to

select the correct tRNA. As a result, accounting for tRNA competition coefficient s, the actual elongation rate of a codon is

Tf
fðjÞwjs

ttNt

Translation Termination

We assume that translation termination is an instantaneous event that occurs immediately after elongation of the last codon at

position L. Upon termination the pool of free ribosomes and free tRNAs corresponding to the codon j0 at position L� 1 each increases

by 1 ðRf/Rf + 1; Tf
fðjÞ0/Tf

fðjÞ0 + 1Þ.

Analytic Approximation for Steady-State Behavior
Whereas we have used the complete stochastic model described above to produce all the simulation figures in the main text, it is

convenient to approximate its steady-state behavior by analytical equations, especially for the purpose of inferring gene-specific initi-

ation probabilities from ribosomal profiling data. To do so we derive here an analytic steady-state approximation, based on ordinary

differential equations that treat all quantities as continuous variables and are therefore accurate when the molecular quantities are

large. This approximation neglects the possibility of ribosomal interference during elongation, and so it is not expected to hold in

regimes for whichmRNAs are densely packed with ribosomes. We will derive analytic approximations for the steady state elongation

times of codons, the amount of free tRNAs, the initiation and total elongation times of all mRNAs, and the steady-state number of free

ribosomes in the cell.

Consider a cell with a total number of ribosomes Rt and n genes each with Ai mRNA copies. Assuming no ribosomal interference

during translation, the expected number of ribosomes bound to eachmRNA can be approximated by solving the differential equation

dRb
i

dt
= ri � Rb

i ei (2)

where ri and ei are the rates of initiation and total elongation of the ith mRNA, respectively. At steady-state the total number of bound

ribosomes is then given by

Rb =
Xn
i = 1

Airi

ei
(3)

The rates of translation initiation and total elongation in turn depend on the amounts of free ribosomesRf and free tRNAs Tf, in addition

to the characteristic times of thesemolecules.We assume that translation termination is instantaneous and does not contribute to the

overall rate of translation. Thus the initiation rate on an mRNA can be given as

ri =
Rfpi

trNr

(4)

where pi is the probability of initiation given that the ribosome has reached the mRNA. pi is sequence-specific and accounts for the

variation in initiation rates of various mRNAs.

Similarly, when a ribosome is bound to the mRNA, the time taken to elongate codon j depends on the number of the free cognate

tRNAs Tf
fðjÞ, the wobble parameter wj, and the tRNA competition coefficient s:

cj =
ttNt

Tf
fðjÞwjs

: (5)
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Thus at equilibrium, assuming no ribosomal collisions/interference, the expected total elongation rate of a ribosome on an

mRNA is

ei =
1Pk

j = 1

xjcj

(6)

where xj is the number of codons of type j, and k denotes the total types of codons (typically k = 61).

Case 1: One Gene and One Amino Acid with Two Codons

Consider a simple case of one gene of length L codons composed of a single amino acid with two types of codons, each translated by

a single tRNA type (T1 or T2). Let the expression level of the gene be A, relative frequency of codon 1 be u, and the total number of

ribosomes in the cell Rt. Based on Equation (6), the total elongation rate of that gene is given by

e=
1

Lðuc1 + ð1� uÞc2Þ (7)

where c1 and c2 are given by Equation (5)

c1 =
ttNt

Tf
1w1s

(8)

c2 =
ttNt

Tf
2w2s

(9)

Note that whenever a ribosome is bound to an mRNA waiting for a tRNA corresponding to the codon at its A-site, a tRNA is bound at

its P-site attached to the growing polypeptide chain. Assuming that the codons in the gene are randomly distributed, the frequency of

tRNA types at ribosomal P-sites are independent of the waiting time for codons in the A-sites. In addition, the total number of bound

ribosomes should equal the number of bound tRNAs of all types Rb =Tb
1 +Tb

2 . As a result, the number of bound tRNAs of each type is

simply proportional to its codon usage.

Tb
1 =Rbu (10)

Tb
2 =Rbð1� uÞ (11)

Note that the above relationship works if the number of bound ribosomes Rb is less than the ratio of total tRNAs of either type to their

codon usage: ðRb<minðTt
1=u; T

t
2=ð1� uÞÞÞ. Therefore, by plugging Equations (8–11) in Equation (7) we get

e=
1

LttNt

 
u

Tf
1
w1s

+ 1�u
Tf
2
w2s

! (12)

=
1

LttNt

 
u

w1sðTt
1
�RbuÞ+

1�u

w2sðTt
2
�Rbð1�uÞÞ

! (13)

From the above Equations (8–13) it should be clear that in order to estimate the elongation times of codons, amount of free tRNAs,

initiation and translation rate, it is sufficient to estimate the number of free ribosomesRf. Given the fundamental parameters of the cell

such as the cell volume, characteristic times of tRNAs and ribosomes, the total number of tRNAs and ribosomes, number of genes,

their composition and their mRNA expression we can calculate the number of free ribosomes Rf by plugging Equations (4 and 13) in

Equation (3).

Rb =
Ar

e
(14)

=
RfApLttNt

trNrs

 
u

w1

�
Tt
1 � Rbu

�+ 1� u

w2

�
Tt
2 � Rbð1� uÞ�

!
(15)
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Rt � Rf =
RfApLttNt

trNr

 
u

w1

�
Tt
1 � ðRt � RfÞu�+ 1� u

w2

�
Tt
2 � ðRt � RfÞð1� uÞ�

!
(16)

Upon simplification we get

Rf =
Rt

1+ z

 
u

w1ðTt
1
�ðRt�RfÞuÞ+

1�u

w2ðTt
2
�ðRt�RfÞð1�uÞÞ

! (17)

where

z=
ApLttNt

trNrs
(18)

Thus, by solving the nonlinear Equation (17) we can compute the number of free ribosomes at equilibrium.

Case 2: Multiple Genes and Multiple Amino Acids with Varying Numbers of Codons

The above described Equation (17) can be easily expanded to its most general form of say 61 total codon types and n genes of length

Li each with Ai mRNAs, pi initiation probabilities, and codon frequencies ui
! as follows

Rf =
Rt

1+ z

0
B@P61

j = 1

u0
j

wj

�
Tt
fðjÞ�ðRt�RfÞ P

kjfðkÞ=fðjÞ
u0
k

�
1
CA

(19)

where

z=
ttNt

trNrs

 Xn
i = 1

AipiLi

!
(20)

u0
j =

Pn
i = 1

uj;iAipiLi

Pn
i = 1

AipiLi

(21)

X61
j = 1

uj;i = 1 (22)

X61
j = 1

u0
j = 1 (23)

Estimation of Gene-Specific Initiation Probabilities pi

We can use our analytic approximations for the steady-state behavior in the cell to estimate gene-specific initiation probabilities from

the ribosomal profiling data of Ingolia et al. (2009). The ribosome profiling data provide gene-specific equilibrium ribosomal densities

Rb
i =Ai.

Rb
i =

Airi

ei
(24)

=

AiR
fpittNtLi

P61
j = 1

uj;i

wj

�
Tt
fðjÞ�Tb

fðjÞ

�
trNrs

(25)

Therefore,
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pi =
Rb

i trNrs�
Rt �Pn

i

Rb
i

�
AiLittNt

 P61
j = 1

uj;i

wj

�
Tt
fðjÞ�Tb

fðjÞ

�
! (26)

Assuming about 85% of all ribosomes are bound to mRNAs (Arava et al., 2003) and that Tb
fðjÞ � Tt

fðjÞ (Jakubowski and Gold-

man, 1984; Varshney et al., 1991; Chu et al., 2011), we can approximate the above equation as follows to infer the initiation

probabilities pi:

piz
Rb

i x

AiLi

 P61
j = 1

uj;i
wjT

t
fðjÞ

! (27)

where

x =
trNrs

0:15RtttNt

Effect of Transgene Abundance on Transcriptome Size
We explored transgene translation in two cases: one in which the transgene mRNA replaces cellular mRNAs keeping the total mRNA

transcriptome size in nucleotides constant, and the other in which transgene mRNA is simply added to the endogenous mRNA,

increasing the total mRNA transcriptome size. For scale, it is helpful to note that 1% of the mRNA in the transcriptome corresponds

to 840 mRNAs of GFP.

Effect of Gene Length on Inferences of Initiation Probabilities
To investigate whether the negative correlation between gene length and inferred initiation probability observed in the yeast data is

the result of any estimation bias we simulated a cell with 100 pairs of genes. Geneswithin each pair had the same codon composition,

same CAI, and same initiation probabilities, but one gene was double the length of the other (the coding sequence was simply

repeated). We simulated the translation of all pairs of genes, each assigned 300mRNA copies in the cell (60,000 total mRNAs). Using

the equilibrium ribosome densities of each simulated gene we then re-estimated their initiation probabilities. We found that doubling

the gene length did not affect each gene’s inferred initiation probability, as desired (Kolmogorov-Smirnov test, p > 0.9, Spearman

correlation, R = 0.997).

In addition, we validated that we can reliably infer initiation probabilities from simulated ribosomal profiling data even when gene

length and initiation probabilities are positively correlated (Figures S1C and S1D). This result indicates that the negative correlation

between gene length and inferred initiation probability observed in the real yeast data is not an artifact of our inference procedure.

Correlation between Gene Length and Ribosome Density in Ribosome Profiling Data
One of the hallmark features of ribosomal profiling data (Ingolia et al., 2009) is the decrease in ribosome density with increasing codon

position. This has been argued to be driven by heterogeneity in ribosome density along eachmRNAmolecule, with higher densities in

the 50 region of genes due to less optimal codons (Tuller et al., 2010). In order to show that position-specific heterogeneity in ribosome

density is not in fact the primary cause of these patterns we used the average ribosomal density of each gene and assumed that

this density is spread uniformly across the entire length of the sequence. We then recomputed the transcriptome-wide average ribo-

some density, by codon position, assuming a uniform density along each mRNA. We found that in the resulting profile, even upon

removing position specific heterogeneity for each individual mRNA, we still observed a sharp decrease in average ribosome density

with codon position (Figure S3A). In addition, when inspecting the profiling data on a gene-by-gene basis we find that just as many

genes exhibit a trend of increasing ribosome density, from 50 to 30, as show evidence of decreasing ribosome density (Figure S3B).

These analyses of the primary profiling data confirm the conclusions drawn from our simulations of translation: the apparent 50 ribo-
some ramp does not actually require a higher density of ribosomes near the 50 end of each message, but rather it can be explained

simply by a greater density of ribosomes on shorter mRNA molecules.

Mapping Ribosome Profile Reads to Genes
The ribosome profiling reads of Ingolia et al. (2009) and their alignment files were downloaded fromGEO under the accession number

GSE13750. We compared the mapped positions of the sequencing reads to the S. cerevisiae genome annotation file downloaded

fromUCSC genome browser ([Karolchik et al., 2003; Dreszer et al., 2012], genome version June 2008 [SGD/sacCer2]). For each cod-

ing sequence, we counted the number of reads that were mapped to each codon (we assigned the read to the codon that mapped to

its 17th base), as well as the total number of reads mapped to the sequence. To avoid ambiguity we excluded the reads that were

mapped to multiple positions across the genome.
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Comparison with Ribosome Flow Model of Translation
The ribosome flowmodel (Reuveni et al., 2011) describes the translation of an individual mRNAmolecule with a fixed rate of initiation

and a fixed rate of elongation per codon. By assuming fixed rates of initiation and elongation, the model implicitly assumes a con-

stant, inexhaustible supply of free ribosomes and free tRNAs in the cell. The ribosome flow model describes the translation of each

mRNA molecule independently of all other mRNAs, and so the model does not account for competition among mRNAs for free ribo-

somes or free tRNAs in the cell. In other words, if onemRNA species is highly abundant and densely packedwith ribosomes, then this

does not limit the pool of available ribosomes to initiate other mRNAs, according to the assumptions of the ribosome flow model.

Furthermore, the model predicts that each mRNA is translated close to (93% of) its maximum translation rate (Reuveni et al.,

2011; Tuller et al., 2011). As a result, protein translation is generally elongation-limited in the ribosome flowmodel. This model, which

rests on the implicit assumption that free ribosomes are always available, is expected to provide an accurate description of trans-

lation in a cell only under conditions in which a very large number of ribosomes are, indeed, free.

To make this point explicit, we have calculated the predicted number of ribosomes bound to mRNAs in a yeast cell based on the

estimates of average ribosome density obtained under the ribosome flow model (Reuveni et al., 2011). According to the ribosome

flow model, the average ribosome density, per 15 codons, ranges from 0.36 to 0.42 for low-expression and high expression genes,

respectively (Reuveni et al., 2011). Therefore, assuming an average ribosome density of 0.4 and a total transcriptome size of 23107

codons (Zenklusen et al., 2008; Ingolia et al., 2009), the number of bound ribosomes predicted by the ribosome flow model is

2310730:4=15= 5:333105. This number greatly exceeds the total number of ribosomes (free or bound) that have been measured

in a real yeast cell (23105 [Warner, 1999; von der Haar, 2008]). As this calculation suggests, the assumptions of the ribosome

flow model imply that an unrealistically large number of ribosomes are required to translate all the mRNAs in a yeast cell.

In order to compare the ribosome flow model with our whole-cell simulation of translation, we artificially increased the number of

ribosomes and tRNAs in our simulations beyond their empirically measured abundances, so that a large supply of themwould be free

in equilibrium – in accordance with the assumptions of the ribosome flow model. To do so, we increased the number of tRNA mol-

ecules 10-fold (chosen so that there would be a large supply of free tRNAs of all species, even in the extreme case of every ribosome

bound to a codon in the transcriptome). We also increased the numbers of ribosomes in the cell, ranging from a 2-fold to a 35-fold

increase. To find the regime that corresponds to the ribosome flow model we identified the number of ribosomes required so that

protein production in the cell is 93% of its maximal capacity (Figure S5A). To achieve this regime requires a 5-fold increase in the

number of simulated ribosomes compared to the true, measured number of ribosomes in a yeast cell. In this regime our simulations

recover the elongation-limited behavior of the ribosome flow model – but the total number of ribosomes bound to all mRNAs in the

resulting simulated cell is about 83105 (Figure S5A) in this regime, which again exceeds the measured number of ribosomes in a real

yeast cell (23105 [Warner, 1999; von der Haar, 2008]), by four-fold. Thus, it is possible for ourmodel to recapitulate the behavior of the

ribosome flow model – in which ribosomes are inexhaustibly abundant and the translation dynamics of each mRNA can be treated

independently – but to do so requires assuming an unrealistic number of cellular ribosomes.

In summary, the number of ribosomes required to reconcile our cellular model of translation with the ribosome flow model vastly

exceeds the number of ribosomes in a normal yeast cell. Likewise, the number of bound ribosomes in the cell, according to direct

estimates of ribosome densities inferred by the ribosome flow model (Reuveni et al., 2011), also exceeds the total number of ribo-

somesmeasured in a yeast cell. These calculations suggest that the elongation-limited regime described by the ribosome flowmodel

is not realistic for most endogenous genes in a healthy yeast cell.
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Figure S1. Validation of Analytical Approximations of Simulations Model, Related to Figure 1

(A) We have derived analytic approximations for the steady-state density of ribosomes on each mRNAmolecule. These equations provide a good approximation

to the true behavior of our stochastic simulation.

(B) We can invert these equations to infer the initiation probability of each gene, based on its observed equilibrium ribosome density. Panel B shows a validation

experiment in which we applied this inference method to data that had been simulated with known initiation probabilities, confirming that we can accurately infer

these parameters.

(C) Correlation between gene length and initiation probabilities does not bias our inference of initiation probabilities. We validated that we can reliably infer

initiation probabilities from observed ribosome densities, even when gene length and initiation probabilities are positively correlated. To do so we inverted the

rank order of initiation probabilities assigned to yeast genes, so that the genes with longer ORFs were now assigned greater initiation probabilities.

(D) When we simulated a cell with this new assignment of initiation probabilities we were still able to reliably infer the simulated initiation probabilities based on the

simulated ribosome density for each gene. These results confirm that the negative correlation between gene length and inferred initiation probability observed in

the real data (main text Figure 5B) is not an artifact of our inference procedure.
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Figure S2. Experimental Validation of Roles of Initiation and Elongation Rates on Protein Production in Yeast, Related to Figures 2 and 4

(A and B) The relationship between protein production, codon bias, and 50 mRNA folding for 141 synthetic GFP genes expressed in Saccharomyces cerevisiae.

We constructed 141 GFP genes, all encoding the same protein sequence but varying randomly at synonymous sites, as previously described (Kudla et al., 2009).

BY4741 yeast was transformed with a Gal-induced 2-micron plasmid, then grown for 24h in 2% Raf +2% Gal. Fluorescence was then measures by FACS.

Measurements typically represent three biological replicates, on the same day. Panel (A) shows the relationship between fluorescence and each GFP gene’s

yeast Codon Adaptation Index; Panel (B) shows the relationship between fluorescence and each GFP gene’s predicted 50 mRNA folding. 50 mRNA folding was

estimated using mfold, as previously described (Kudla et al., 2009). There is no significant correlation between expression level and codon bias, suggesting that

elongation rates do notmodulate protein production in these constructs. By contrast, there is a significant correlation between expression level andmRNA folding

near the translation initiation site, indicating that initiation rates strongly influence protein production in these constructs.
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Figure S3. Evidence that the Ramp of 50 Ribosomes in Profiling Data Is Not Caused by Codon Ordering, Related to Figure 5

(A) We removed all positional information in the profiling data, and used instead only the average ribosome density along each transcript, as reported by Ingolia

et al. (2009). When we assume that ribosomes are uniformly distributed along each message, then the figure shows the resulting density of ribosomes as a

function of codon position, averaged across the expression-weighted transcriptome. Similar results were obtained using the unweighted transcriptome (data not

shown). In both cases we observe a ramp of higher 50 ribosome density. These results demonstrate that the ramp can be attributed primarily to a greater overall

density of ribosomes on shorter genes, even if ribosomes are distributed uniformly along each message.

(B) Evidence that individual genes in yeast do not exhibit a trend toward a 50 ramp of ribosomes. We analyzed the raw profiling data of Ingolia et al. (2009) and

computed, for each yeast gene, the regression between codon position and average ribosome density at that position. A genewith a ramp of elevated 50 ribosome

densities would exhibit a negative slope. Instead, we found that just as many genes exhibit a positive slope as exhibit a negative slope. The mean slope among

genes is not significantly different from zero (p = 0.58). Thus, there is no systematic trend toward elevated 50 ribosome densities on individual genes, in the data of

Ingolia et al. (2009).
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Figure S4. Evidence that Genes Binned by Lengths Do Not Exhibit a Trend toward a 50 Ramp of Ribosomes, Related to Figure 5

We analyzed the raw profiling data of Ingolia et al. (2009), and computed position-specific ribosome density for groups of genes binned by their ORF lengths. This

figures is analogous to Figure S11 of Ingolia et al. (2009), but with more stringent bins on length: each panel contains 5% of genes in the Ingolia data set, sorted

according to their lengths. We find no consistent 50-to-30 ramp (some panels show 30-to 50-ramps) in the data of Ingolia et al. (2009).
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Figure S5. Comparison between Initiation-Limited and Elongation-Limited Regimes of Protein Translation, Related to Figure 5

We simulated our model of translation in a wild-type yeast cell with either the standard number of ribosomes and tRNAs, as used in all other simulations in our

study, or alternatively with 10-fold as many tRNAs and an elevated number ribosomes.

(A) We ran multiple simulations that varied the scaling coefficient applied to the number of ribosomes, from 1-fold to 35-fold more than their empirically measured

abundance. The number of ribosomes (or, more precisely, the number of free ribosomes) determines the initiation rate of any mRNA whose 50 end is not currently

obstructed by a bound ribosome; and so this quantity corresponds to the initiation rate l in the ribosome-flow model (Reuveni et al., 2011). Black lines show the

total rate of protein production, as a function of the fold-increase in ribosome abundance. As the number of ribosomes is increased, our simulationmodel behaves

like the ribosome-flow model, in which free ribosomes are always abundant and each mRNA is initiated at a fixed rate independent of how many ribosomes are

being used to translate other mRNAs; in this regime protein production is elongation-limited. However, the number of ribosomes required to achieve this regime is

unrealistic: many more ribosomes are bound to mRNAs (red curve) in this regime than the total number of ribosomes in a real yeast cell.

(B) Simulations under elongation-limited regime of ribosome flow models do produce a ‘‘ramp’’ of decreasing ribosome densities with codon position. However,

this decrease persists regardless of codon ordering within genes and to a lesser degree with randomized gene-specific initiation probabilities. This indicates that

the ramp produced under the assumptions of ribosome-flow model is an artifact of the underlying elongation-limiting assumption.
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Figure S6. Effects of Amino Acid Starvation on Protein Production, Number of Free Ribosomes, Overall Elongation Rates, and Ribosomal

Stalling, Related to Figure 7

All quantities are shown relative to a wild-type cell without any amino acid starvation. We simulated starvation of a particular amino acid by reducing the

abundance of all its (charged) cognate tRNAs by either two-, five-, or ten-fold. The rate of protein production decreases under stress, and it can decrease

extensively when starvation is severe. Starvation of different amino acids has radically different effects on protein production.

(A–D) Decreased protein synthesis upon starvation is caused primarily by a corresponding decrease in the pool of free ribosomes (comparing panel A to panel B).

Starving a cell of amino acids reduces the number of free ribosomes, and this in turn leads to fewer free tRNAs. The combined effects of these two processes lead

to an overall decrease in (C) total elongation rates across all mRNAs. Starving a cell of amino acids leads to higher densities of ribosomes bound tomRNAs (D). As

a result, greater proportions of bound ribosomes are stalled - that is, they are obstructed from further elongation due to a neighboring ribosome bound 10 codons

ahead on the same mRNA.
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Figure S7. The Effects of Repressing Ribosome Synthesis on Protein Production during Amino Acid Starvation, Related to Figure 7

During starvation, cells usually respond by repressing ribosome production. Reducing ribosomes under normal or mild-stress conditions always reduces protein

production. However, for many amino acids (e.g., A, E, L, P, Q, S, V), reducing ribosomes by small amounts partly rescues protein production under amino-acid

starvation. The y axis shows the total rate of protein production relative to a wild-type cell without any amino-acid starvation.
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