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Cavity parameters The coherent ion-cavity coupling rate is g = 2π × 1.4 MHz. The cavity field

decay rate is κ = 2π × 0.05 MHz, and the atomic polarization decay rate from the P3/2 state

is γ = 2π × 11.5 MHz.The effective coupling strength of the two Raman transitions i = 1, 2

is given by Ωeff
i = 2π × gGiΩi

2∆i
, where Gi is a geometric factor that takes into account both the

relevant Clebsch-Gordon coefficients and the projection of the vacuum-mode polarization onto the

atomic dipole moment1. The detunings ∆1,2 are approximately 400 MHz. In order to preserve the

amplitudes of the initial state during mapping, we ensure equal transition probabilities for the two

Raman transitions by setting the ratio of the Rabi frequencies Ω1/Ω2 = G2/G1 = 2, with absolute

values Ω1 = 2π × 17.5 MHz and Ω2 = 2π × 8.75 MHz.
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The polarization modes of the cavity are degenerate, that is, we observe no birefringent split-

ting in the cavity linewidth κ, with measurements sensitive to a tenth of the linewidth. We hypoth-

esize that this degeneracy is due to the mounting of the cavity mirrors in circular frames2, which

distribute the mechanical stress of the mounting homogeneously across the mirror. In other ex-

periments using high-finesse cavities, a similar mounting strategy has minimized birefringence3, 4.

This degeneracy avoids entanglement of the polarization with the frequency degree of freedom of

the photon.

Data analysis In order to characterize the mapping process, we carry out process tomography.

For this purpose, we perform state tomography of the photonic output state for four orthogonal

atomic input states5. Each state tomography of a single photonic polarization qubit consists of

measurements in the three bases H/V , D/A, and R/L. Note that H and V correspond to the two

cavity modes, where V is parallel to the ẑ axis of Fig. 1a in the main text and H to the x̂ axis.

(In contrast, in Ref. 6, we defined H rather than V to be parallel to the magnetic field axis.) In

each basis, we perform two measurements of equal duration in which the output paths to avalanche

photodiodes APD1 and APD2 are swapped by rotating waveplates L/2 and L/4. Summing these

measurements allows us to compensate for unequal detection efficiencies in the two paths6.

The process and density matrices plotted in Fig. 2a and b in the main text are reconstructed

from the data using a maximum likelihood fit7. We extract fidelities and their statistical uncertain-

ties via non-parametric bootstrapping assuming a multinomial distribution8. Statistical uncertain-
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ties are stated as one standard deviation. The data consist of 32, 368 single-photon detection events

for the detection time window of 55 µs. Within the same time window, we detect 52 two-photon

events, consistent with dark counts and afterpulsing of the detectors.

Time independence If the atomic qubit is comprised of nondegenerate states, Larmor precession

will change the qubit’s phase over time. For a monochromatic mapping protocol in which the

photonic qubit is encoded solely in polarization, the phase of the photonic qubit thus depends on

the time of photon generation9. In contrast, for the two Raman fields Ω1e
iωl1

t and Ω2e
iωl2

t at

frequencies ωl1 and ωl2 , the mapping pulse can be applied at any time for the correct choice of

frequency difference between the two Raman fields ωl1 − ωl2 = ∆ES,S′/h̄, where ∆ES,S′ is the

Zeeman splitting between the two qubit states S and S′. In this case, the atomic qubit is always

mapped to the same photonic qubit state, independent of the photon generation time.

To show this, we define a model system consisting of initial states |S, n〉, |S′, n〉, intermedi-

ate states |P, n〉, |P ′, n〉 and target state |D,n〉 with energies ES,S′,P,P ′,D = h̄ωS,S′,P,P ′,D. Here,

n = 0, 1 denotes the number of photons in either of the two degenerate cavity modes at energy

h̄ωC . A similar model system was used to explain the time independence of the bichromatic en-

tanglement protocol that we recently demonstrated6. The |S, n〉 ↔ |P, n〉 transition is driven by

the field Ω1e
iωl1

t with detuning ∆l1 = ωS − ωP − ωl1 , while the |S′, n〉 ↔ |P ′, n〉 transition is

driven by the field Ω2e
iωl2

t with detuning ∆l2 = ωS′ − ωP ′ − ωl2 . We choose a unitary transfor-

mation into a rotating frame that takes into account the atomic precession at frequency ωS − ωS′ :
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U = e−iωl1
t |S〉〈S| e−iωl2

t |S′〉〈S′| . After this transformation and adiabatic elimination of the state

|P, n〉, the Hamiltonian reads

H/h̄ =(ωS + ωl1) |S〉〈S| + (ωS′ + ωl2) |S′〉〈S′| + ωP ′ |P ′〉〈P ′| + ωD |D〉〈D|

+ ωC |1〉〈1| +
(
geff

1 |D, 1〉〈S, 0| + geff
2 |D, 1〉〈S′, 0| + h.c.

)
, (1)

where the energy reference is the |P, 0〉 state (ωP = 0). Both couplings geff
i = Ωi·g

2∆li
are time-

independent. Choosing the frequencies of the two fields to match the two Raman conditions

ωS +ωl1 = ωD +ωC = ωS′ +ωl2 corresponds to a frequency difference |ωl1 −ωl2 | = |ωS −ωS′ |.

The two states |S, 0〉 and |S′, 0〉 are degenerate in this frame, resulting in a constant phase of the

atomic state. As the couplings are also time-independent, the phase ϕ of the atomic state does not

change during the transfer to the photonic state (equation 1 of the main text). As both modes of the

cavity are degenerate, the phase ϕ of the photonic state remains constant after the transfer.

We initially proposed a mapping scheme for calcium ions in Ref. 1 in which a σ−-polarized

drive beam would couple both |S〉 and |S′〉 to the state |32D5/2,mJ = −3/2〉. The drive beam of

that scheme, however, would introduce a differential AC-Stark shift between the two qubit states.

This shift would have to be compensated in order to preserve the time-independence of the mapping

process. As such compensation appears challenging in the experiment, we developed the present

scheme. Here, the π-polarized drive beam avoids differential AC-Stark shifts between the qubit

states.

So far, we have neglected off-resonant Raman transitions, i.e., Ω1 coupling |S′, n〉 to |P ′, n〉
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and Ω2 coupling |S, n〉 to |P, n〉. Taking these couplings into account, the terms geff
i in the Hamil-

tonian are proportional to Ωi + Ωje
i(ωlj

−ωli
)t after transformation into the rotating frame and adi-

abatic elimination of |P, n〉. Here, the second term, oscillating at |ωli − ωlj |, corresponds to

off-resonant Raman transitions in which a photon with unwanted polarization is generated. These

terms are neglected in the rotating wave approximation because |geff
i | � |ωl1 − ωl2 |. These off-

resonant coupling terms, however, explain why the fidelity of the mapping process only reaches

its maximum after about 3 µs (Fig. 3 of the main text). As confirmed by our simulations, the off-

resonant Raman processes generate photons with unwanted polarization at the timescale of 100 ns

after turning on the drive laser pulse. However, the probability for this process is very low due to

the large detuning from Raman resonance, and the effect is quickly overcome by the much higher

probability of generating photons with the desired polarization thereafter.

Simulations Numerical simulations of the state-mapping process are based on the Quantum Optics

and Computation Toolbox for MATLAB10. We formulate the master equation for the 18-level

40Ca+ system interacting with two orthogonal modes of an optical cavity. We then numerically

integrate the master equation to obtain the system’s density matrix as a function of time. The

simulation includes atomic and cavity decay and the laser linewidth. Relative motion of the ion with

respect to the cavity mode is taken into account by introducing an effective atom-cavity coupling

gmotion smaller than g. This motion results from the (presumably mechanical) oscillation of the

ion trap with respect to the cavity1. Furthermore, small effects such as finite switching time of the

laser, laser-amplitude noise and relative phase noise are neglected in the model.
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The simulations require us to specify the input parameters: magnetic field B, Raman-laser

frequencies ωl1 and ωl2 , photon detection path efficiency, and Rabi frequencies Ω1 and Ω2, as well

as system parameters g, κ, and γ. B and the laser frequencies are determined from spectroscopy of

the quadrupole transition to within 3 kHz. A detection path efficiency of 6.8% is used to scale the

simulation results, consistent with previous measurements1. Ω1 and Ω2 are determined experimen-

tally via Stark-shift measurements with an uncertainty on the order of 20%. However, the temporal

shape of the photons is highly dependent on Ω1 and Ω2 and on the atom-cavity coupling g. In the

simulation, we therefore adjust Ω1 and Ω2 within the experimental uncertainty range and find that

the values Ω1 = 2π × 17.5 MHz and Ω2 = 2π × 8.75 MHz generate photon shapes that have the

best agreement with data. In order to improve this agreement, we adjust g to the effective value

gmotion = 0.6g, consistent with calibration measurements that indicate the ion was not optimally

coupled to the cavity field.

As discussed in the main text and presented in Fig. 2c, there are eight combinations of initial

state and detection basis for which the temporal photon shapes on both detectors are identical.

However, in two of these eight cases, the simulated photon shapes in the two polarization modes

do not overlap perfectly with one another. This small discrepancy occurs for the |S + iS′〉 initial

state and the D/A basis as well as for the |S − S′〉 state and the R/L basis, and it is due to errors

that accumulate during the numerical integration routine.

For each detection time window in Fig. 3 in the main text, we estimate the relative contribu-
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tions of APD dark counts and data, and the simulated density matrices are weighted accordingly.

Additionally, off-diagonal matrix terms are scaled by a factor of 0.99 representing imperfect state

initialization and by the exponential e−2t/τ , where τ = 110 µs is the atomic coherence time.
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