Potential Role of miRNAs in Pediatric HF

Analysis of potential miRNA targets was based on changes in miRNA expression shown in Figure 1B. Differences in fold change are consistent with changes observed in adult miRNA expression [\[1\]](#page-2-0).Interestingly, miR-133a does not change in response to treatment, but expression of miR-133b is increased in PDEi-treated patients. It is likely that miR-133a and miR-133b have similar targets since they have identical seed sequences. Up-regulation of miR-133a is protective in the setting of cardiac pathology, preventing the transition to a dilated phenotype [\[2\]](#page-2-1). It is possible that up-regulation of miR-133b in PDEi-treated patients correlates with a beneficial response to treatment. miR-125a/b is induced in early hypertrophic growth [\[3\]](#page-2-2), and although expression of this miRNA was not significantly increased by array, it was increased by RT-PCR in HF patients. Expression of miR-27b is also increased in PDEi-treated patients. An increase in miR-27b expression results in increased levels of β-myosin heavy chain (MyHC) [\[4\]](#page-2-3), but it is also anti-hypertrophic in cardiomyocytes [\[5\]](#page-2-4). Expression levels of miR-204 were increased in PDEi-treated patients. Down-regulation of miR-204 in rats is associated with autophagy [\[6\]](#page-2-5), and up-regulation of miR-204 reduces disease severity in pulmonary hypertension [\[7\]](#page-2-6), and may correlate with the beneficial response to treatment in PDEitreated IDC patients. Conversely to what was observed by array, miR-146a was upregulated in PDEi-treated patients. Up-regulation of miR-146a is mediated by IL-1β, and miR-146a is involved in orchestrating inflammation [\[8\]](#page-2-7). This suggests that inflammation may be an important aspect of pediatric IDC. Over-expression of miR-195 is involved in cardiac hypertrophy and failure [\[2\]](#page-2-1). Although expression of this miRNA was not significantly increased by array, it was by RT-PCR, and it may be involved in the

hypertrophic response. Although expression of miR-7 and miR-223 changed significantly by array, this was not observed by RT-PCR. Expression of miR-7, miR-223 and miR-146a was very low by array which may have prevented an accurate measurement. Expression of miR-21 consistently changes in adult human and animal heart failure models [\[2\]](#page-2-1). However, we failed to observe changes in in its expression by array or RT-PCR. miR-21 is involved in fibrosis which is rare in pediatric HF [\[9\]](#page-2-8), and could be related to the lack of changes in miR-21 expression. Expression of the contractile-related miRNAs, miR-208a, miR-208b and miR-499 was also analyzed. Expression of miR-208a, 208b and miR-499 is increased in adult human HF [\[10\]](#page-2-9), however, this has not been shown in all studies. A recent study has shown that downregulation of miR-208a is beneficial in a heart disease model [\[11\]](#page-2-10), and it is interesting that miR-208a is not increased in pediatric IDC patients. miR-1 can be up- or downregulated in adult HF, and studies have shown that up-regulation of miR-1 can be protective in a hypertrophic setting [\[2\]](#page-2-1). Interestingly, miR-1 is up-regulated only in treated patients. Finally, we had previously shown that miR-486-5p is down-regulated in adult HF by miRNA array [\[1\]](#page-2-0). We were not able to confirm down-regulation of miR-486- 5p by RT-PCR in adult HF patients (data not shown). However, expression of miR-486- 5p is significantly decreased in PDEi-treated pediatric IDC patients. Not much is known about this miRNA in myocytes. However, it is known to target FOXO1, which promotes cardiomyocyte survival [\[12\]](#page-2-11), and the histone deacetylase Sirt1, which may increase cells proliferation [\[13\]](#page-2-12), suggesting that down-regulation of miR-486-5p may be involved in promoting cellular proliferation, and could contribute to the beneficial clinical effects of PDEi treatment in children with IDC.

References:

[1] Sucharov C, Bristow MR, Port JD. miRNA expression in the failing human heart: functional correlates. J Mol Cell Cardiol. 2008;45:185-92.

[2] Topkara VK, Mann DL. Role of microRNAs in cardiac remodeling and heart failure. Cardiovasc Drugs Ther. 2011;25:171-82.

[3] Busk PK, Cirera S. MicroRNA profiling in early hypertrophic growth of the left ventricle in rats. Biochem Biophys Res Commun. 2010;396:989-93.

[4] Abdellatif M. Differential expression of microRNAs in different disease states. Circ Res. 2012;110:638- 50.

[5] Jentzsch C, Leierseder S, Loyer X, Flohrschutz I, Sassi Y, Hartmann D, et al. A phenotypic screen to identify hypertrophy-modulating microRNAs in primary cardiomyocytes. J Mol Cell Cardiol. 2012;52:13- 20.

[6] Xiao J, Zhu X, He B, Zhang Y, Kang B, Wang Z, et al. MiR-204 regulates cardiomyocyte autophagy induced by ischemia-reperfusion through LC3-II. J Biomed Sci. 2011;18:35.

[7] Courboulin A, Paulin R, Giguere NJ, Saksouk N, Perreault T, Meloche J, et al. Role for miR-204 in human pulmonary arterial hypertension. J Exp Med. 2011;208:535-48.

[8] Curtale G, Citarella F, Carissimi C, Goldoni M, Carucci N, Fulci V, et al. An emerging player in the adaptive immune response: microRNA-146a is a modulator of IL-2 expression and activation-induced cell death in T lymphocytes. Blood. 2010;115:265-73.

[9] Sato H, Shiraishi I, Takamatsu T, Hamaoka K. Detection of TUNEL-positive cardiomyocytes and c-kitpositive progenitor cells in children with congenital heart disease. J Mol Cell Cardiol. 2007;43:254-61. [10] Satoh M, Minami Y, Takahashi Y, Tabuchi T, Nakamura M. Expression of microRNA-208 is associated with adverse clinical outcomes in human dilated cardiomyopathy. J Card Fail. 2010;16:404-10.

[11] Montgomery RL, Hullinger TG, Semus HM, Dickinson BA, Seto AG, Lynch JM, et al. Therapeutic inhibition of miR-208a improves cardiac function and survival during heart failure. Circulation. 2011;124:1537-47.

[12] Xu J, Li R, Workeneh B, Dong Y, Wang X, Hu Z. Transcription factor FoxO1, the dominant mediator of muscle wasting in chronic kidney disease, is inhibited by microRNA-486. Kidney Int. 2012.

[13] Kim YJ, Hwang SH, Lee SY, Shin KK, Cho HH, Bae YC, et al. miR-486-5p Induces Replicative Senescence of Human Adipose Tissue-Derived Mesenchymal Stem Cells and Its Expression Is Controlled by High Glucose. Stem Cells Dev. 2012;21:1749-60.

Figure Legends:

Figure S1: Pathway analysis for putative mRNA targets of miRNAs that change in PDEi-treated IDC patients. (A) miR-1, (B) miR-27b, (C) miR-133b, (D) miR-146a, (E) miR-204, (F) miR-486-5p.

Table S1: Patient Subject Characteristic and Analysis

Table S2: Common putative targets regulated by a minimum of three PDEi-upregulated miRNAs

D.

F.

Table S1

Table S2