Appendix

1 Proof of Lemma 2

Proof 1 Let $\{(f_1, f_2), (f_2, f_3), ..., (f_{k-1}, f_k), (f_k, f_1)\}$ be the edges of a simple cycle c_s in G_F of length k fragments (vertices). We can partition the fragments into two sets such that each set corresponds to the haplotypes of the individual. If k is even, then we can partition the even fragments $(f_2, ..., f_k)$ and odd fragments $(f_1, ..., f_{k-1})$ into two sets such that each set does not contain internal fragment conflicts. Likewise, if k is odd, then no such partition exists because f_k conflicts with f_1 and f_{k-1} . The function that takes a cycle in G_C and computes the number of $_{10}^{01}$ (negative) edges is denoted neg(). We claim that for k even, neg (c_s) is even and for k odd neg (c_s) is odd. For this proof we consider any length k-1 subset of vertices in c and without loss of generality we assume this subset is $v_1, ..., v_{k-1}$. Consider any two adjacent fragments in this cycle f_i and f_j such that i < j and they share the k^{th} SNP. As we iterate through fragments of the cycle, we call the allele that will be paired with the next fragment the active allele. If $(s_k, s_{k+1}) < 0$ then $f_{j,k+1} = f_{i,k}$, that is, the active allele that will pair with f_{j+1} is the same allele as $f_{i,k}$. However, if $(s_k, s_{k+1}) > 0$ then $f_{j,k+1} \neq f_{i,k}$, and the active allele that will pair with f_{j+1} will be the opposite allele as $f_{i,k}$. Thus negative edges in G_C do not change the active allele while positive edges in G_C flip the active allele from 0 to 1 (or vice-versa).

Case (1): k even. The $v_1, ..., v_{k-1}$ subset either has an even or odd number of negative pairwise phase relationships. Case 1.a: Even number of negative pairwise phase relationships; odd number of positive pairwise phase relationships. The active allele of v_{k-1} is the same as the active allele of v_1 therefore v_k must be induce a positive pairwise phase relationship. Case 1.b: Odd number of negative pairwise phase relationships; even number of positive pairwise phase relationships. The active allele of v_{k-1} is different from the active allele of v_1 therefore v_k must be induce a negative pairwise phase relationship. In both cases 1.a and 1.b the total number of negative edges is even.

Case(2): k is odd. Case 2.a: Even number of negative pairwise phase relationships; even number of positive pairwise phase relationships. The active allele of v_{k-1} is different from the active allele of v_1 therefore v_k must be induce a negative pairwise phase relationship. Case 2.b: Odd number of negative pairwise phase relationships. The active allele of v_{k-1} is the same as the active allele of v_1 therefore v_k must be induce a positive pairwise phase relationships. The active allele of v_{k-1} is the same as the active allele of v_1 therefore v_k must be induce a positive pairwise phase relationship. In both cases 2.a and 2.b the total number of negative edges is odd.

2 MWVR Proof

Theorem: MWVR is NP-hard.

Proof 2 The reduction is from the problem of removing the minimum number of edges of a graph to make it bipartite. Let G be an arbitrary graph and M the SNP-fragment matrix as defined in Lemma 1 which encodes the fragment conflict graph $G_F = G$. G_F may contain a number of cycles of odd length which produce conflicting cycles in the compass graph G_C by Lemma 2. Each vertex in G_C corresponds to an edge in G_F by Lemma 1. The vertex set solution to the MVR optimization L yields the minimum number of vertices required to remove all of the conflicting cycles in G_C . Because a graph is bipartite if and only if it contains no odd length cycles and G_C is the line graph of G_F , the removal of these vertices corresponds to removal of edges; the minimum of which makes G_F bipartite.

3 Pacific Biosciences run times

	HapCompass MWER	HapCompass MEC	HapCUT	Levy
avg. time (s)	10	10.8	13.6	19.3
avg. memory (MB)	1251	1489	43.2	1049

Table 1: Average resource requirements for PacBio haplotype assembly runs. The HapCompass software is not optimized for minimal memory usage which is exemplified in the memory requirement results of the Levy *et al.* (2007) algorithm. This algorithm is implemented within the HapCompass software and should have a very small fingerprint but requires about a gigabyte of memory. Reducing the input fragment set into a secondary format prior to haplotype assembly (HapCUT does this) reduces our memory footprint by a factor of 10-100 times.

	MWER			MEC		Levy			HapCUT			
Chr	FMPR	BFM	MEC	FMPR	BFM	MEC	FMPR	BFM	MEC	FMPR	BFM	MEC
1	3421	2348	2371	3681	2519	2545	3619	2594	2632	3520	2423	2441
2	4891	2930	2996	5193	3081	3166	5154	3175	3273	5140	3022	3072
3	3696	2394	2449	4014	2585	2629	3823	2643	2703	3789	2476	2511
4	4846	2710	2777	5136	2906	2976	4891	2899	2974	4971	2805	2846
5	3569	2245	2265	3847	2428	2451	3851	2581	2606	3650	2290	2299
6	10425	3603	4032	10944	3846	4265	9468	3700	4075	10597	3630	4030
7	3512	2138	2173	3768	2288	2330	3677	2358	2407	3621	2214	2238
8	2894	1864	1891	3142	1999	2029	3048	2084	2118	2979	1947	1951
9	2844	1551	1572	3039	1667	1689	2737	1655	1687	2884	1580	1591
10	2743	1857	1875	2952	1981	2001	2838	2027	2048	2836	1932	1940
11	2662	1634	1650	2837	1727	1749	2643	1739	1778	2728	1694	1693
12	2620	1627	1657	2833	1784	1811	2786	1819	1856	2676	1678	1687
13	2503	1461	1477	2625	1554	1573	2473	1558	1576	2548	1490	1501
14	1442	1020	1027	1525	1070	1079	1512	1094	1102	1471	1045	1044
15	1635	1085	1097	1786	1168	1189	1757	1254	1272	1696	1133	1142
16	2158	1308	1344	2297	1410	1435	2198	1405	1458	2205	1333	1368
17	2797	1219	1320	3099	1354	1460	2493	1230	1305	2788	1216	1299
18	1457	982	985	1629	1088	1094	1563	1118	1130	1490	1013	1009
19	1292	803	815	1404	865	879	1369	901	918	1324	816	826
20	1169	808	817	1247	859	866	1279	924	939	1210	846	847
21	871	545	558	916	581	588	912	589	601	901	563	574
22	681	446	449	709	461	465	698	485	488	700	460	463

4 1000 Genomes Project Results

Table 2: Results of the NA12878 1000 Genomes Project 454 haplotype assemblies for chromosomes (chr) 1-22 and algorithms HapCompass MWER, HapCompass MEC, Levy *et al.* (2007), and HapCUT.

References

Levy, S., Sutton, G., *et al.* (2007). The diploid genome sequence of an individual human. *PLoS biology*, **5**(10), e254.