Appendix

1 Proof of Lemma 2

Proof 1 Let $\{(f_1, f_2), (f_2, f_3), ..., (f_{k-1}, f_k), (f_k, f_1)\}\)$ be the edges of a simple cycle c_s in G_F of length k fragments (vertices). We can partition the fragments into two sets such that each set corresponds to the haplotypes of the individual. If k is even, then we can partition the even fragments $(f_2, ..., f_k)$ and odd fragments $(f_1, ..., f_{k-1})$ into two sets such that each set does not contain internal fragment conflicts. Likewise, if k is odd, then no such partition exists because f_k conflicts with f_1 and f_{k-1} . The function that takes a cycle in G_C and computes the number of $_{10}^{01}$ (negative) edges is denoted neg(). We claim that for k even, neg(c_s) is even and for k odd neg(cs) is odd. For this proof we consider any length $k-1$ subset of vertices in c and without loss of generality we assume this subset is $v_1, ..., v_{k-1}$. Consider any two adjacent fragments in this cycle f_i and f_j such that $i < j$ and they share the k^{th} SNP. As we iterate through fragments of the cycle, we call the allele that will be paired with the next fragment the active allele. If $(s_k, s_{k+1}) < 0$ then $f_{j,k+1} = f_{i,k}$, that is, the active allele that will pair with f_{j+1} is the same allele as $f_{i,k}$. However, if $(s_k, s_{k+1}) > 0$ then $f_{j,k+1} \neq f_{i,k}$, and the active allele that will pair with f_{j+1} will be the opposite allele as $f_{i,k}$. Thus negative edges in G_C do not change the active allele while positive edges in G_C flip the active allele from 0 to 1 (or vice-versa).

Case (1): k even. The $v_1, ..., v_{k-1}$ subset either has an even or odd number of negative pairwise phase relationships. Case 1.a: Even number of negative pairwise phase relationships; odd number of positive pairwise phase relationships. The active allele of v_{k-1} is the same as the active allele of v_1 therefore v_k must be induce a positive pairwise phase relationship. Case 1.b: Odd number of negative pairwise phase relationships; even number of positive pairwise phase relationships. The active allele of v_{k-1} is different from the active allele of v_1 therefore v_k must be induce a negative pairwise phase relationship. In both cases 1.a and 1.b the total number of negative edges is even.

 $Case(2):$ k is odd. Case 2.a: Even number of negative pairwise phase relationships; even number of positive pairwise phase relationships. The active allele of v_{k-1} is different from the active allele of v_1 therefore v_k must be induce a negative pairwise phase relationship. Case 2.b: Odd number of negative pairwise phase relationships; odd number of positive pairwise phase relationships. The active allele of v_{k-1} is the same as the active allele of v_1 therefore v_k must be induce a positive pairwise phase relationship. In both cases 2.a and 2.b the total number of negative edges is odd.

2 MWVR Proof

Theorem: MWVR is NP-hard.

Proof 2 The reduction is from the problem of removing the minimum number of edges of a graph to make it bipartite. Let G be an arbitrary graph and M the SNP-fragment matrix as defined in Lemma 1 which encodes the fragment conflict graph $G_F = G$. G_F may contain a number of cycles of odd length which produce conflicting cycles in the compass graph G_C by Lemma 2. Each vertex in G_C corresponds to an edge in G_F by Lemma 1. The vertex set solution to the MVR optimization L yields the minimum number of vertices required to remove all of the conflicting cycles in G_C . Because a graph is bipartite if and only if it contains no odd length cycles and G_C is the line graph of G_F , the removal of these vertices corresponds to removal of edges; the minimum of which makes G_F bipartite.

3 Pacific Biosciences run times

Table 1: Average resource requirements for PacBio haplotype assembly runs. The HapCompass software is not optimized for minimal memory usage which is exemplified in the memory requirement results of the Levy [et al.](#page-1-0) [\(2007\)](#page-1-0) algorithm. This algorithm is implemented within the HapCompass software and should have a very small fingerprint but requires about a gigabyte of memory. Reducing the input fragment set into a secondary format prior to haplotype assembly (HapCUT does this) reduces our memory footprint by a factor of 10-100 times.

4 1000 Genomes Project Results

Table 2: Results of the NA12878 1000 Genomes Project 454 haplotype assemblies for chromosomes (chr) 1-22 and algorithms HapCompass MWER, HapCompass MEC, [Levy](#page-1-0) et al. [\(2007\)](#page-1-0), and HapCUT.

References

Levy, S., Sutton, G., et al. (2007). The diploid genome sequence of an individual human. PLoS biology, $5(10)$, e254.