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S1 Comparison with String Kernels on Additional

Datasets

We compared the proposed method with other string kernels on two other datasets, i.e.,
transcription start site (TSS) prediction [Ohler et al.(2002)Ohler, Liao, Niemann, and
Rubin] and splice site prediction [Rätsch et al.(2006)Rätsch, Sonnenburg, and Schäfer].
The TSS dataset was extracted from the Drosophila genome [Ohler et al.(2002)Ohler,
Liao, Niemann, and Rubin]. It contains 1,864 positive samples and 4,658 negative samples.
Each sample (a nt sequence) contains 300 nt which includes 250 nt upstream and 50 nt
downstream of a TSS. We conducted a five-fold cross-validation on the TSS dataset to
test the performance of the k-spectrum (SPE) kernel, the weighted degree (WD) kernel
and our method. The average performance over the five folds is reported in Table S1. The
splice site dataset was taken from [Rätsch et al.(2006)Rätsch, Sonnenburg, and Schäfer],
which contains 8,842 positive samples and 253,579 negative samples. Each sample contains
141 nt centered around a AG dimer. We followed the same training/validation/test set
partition as [Rätsch et al.(2006)Rätsch, Sonnenburg, and Schäfer], which results in 100,000
samples for training, 100,000 samples for tuning the parameters and 62,421 samples for
testing. Table S1 shows the performance of different string kernels on this dataset.

For the TSS dataset, our method is consistently the best one among the three methods
in terms of the error rate, the false positive rate and the false negative rate. For the
splice site dataset, our method is comparable with WD. The reason that we did not
have a significant advantage over WD is that this dataset was extremely unbalanced. As
mentioned above, the number of the negative sequences was over 28 times more than
that of the positive sequences. A single negative HMM model might not be rich enough
to account for all the sequences variations. Also, the negative sequences were randomly
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generated, so the patterns were averaged out in fitting a single negative HMM. This
“averaging” effect reduced our discriminative power.

Table S1. Comparison of the performance of our method (HMM) with SPE and WD
on the TSS dataset and the splice site dataset. “Rel” denotes the relative improvement
of HMM with respect to SPE. The lowest error rate for each motif variant is indicated in
bold. All the values in the table are in percentiles. For splice site, SPE did not finish
within 24 hours, so we do not report its performance here.

Dataset
Error Rate False Negative Rate False Positive Rate

SPE WD HMM Rel SPE WD HMM Rel SPE WD HMM Rel
TSS 13.99 12.87 11.19 13.06 29.40 24.30 22.91 5.74 7.83 8.30 6.49 21.74
Splice site - 1.03 1.12 -8.84 - 18.98 23.02 -21.27 - 0.39 0.34 12.71
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Figure S1. Grid search of parameters k (the number of nucleotides to combine into a
mega-observation) and m (the number of hidden states) for training and testing
accuracies of the 12 variants.


