
Supplementary material 
 
Using expression-masked images 
Images in the Allen dataset are provided in two formats: the raw imagery, and images that 
were processed as previously described1 to remove the background, yielding expression-
masked images. The analysis was applied to the masked images. This is a big advantage 
when examining expression patterns, as noise effects coming from cytoarchitecture and 
underlying brain structures is reduced. Examples of a pair of images are given below in Fig 
S1. 

  

 
 

Figure S1: Regular (a) and expression-masked (b) examples of ISH images as 
provided by the Allen Brain Atlas, for the gene Tuba1. While the expression masked 
images are presented in color, the color images are in fact derived from gray-scale 
images, which we have used in this work. 

   

Robustness of bag-of-words representations 
 
In order to validate the stability of the bag-of-words gene representations, we 
measured the similarities between pairs of representations of images that are of the 
same gene but from different image series, and the similarities between the 
representations of different genes.  
 
Similarity is much higher for representations of the same gene (Wilcoxon difference 
of medians test, p<10-200). The similarity values are shown in figure S2. This implies 
that representations of the same gene, derived from different image series are 
indeed stable and are representative of the gene.     
 



 
Figure S2: The similarity in the representation of same-gene pairs (blue) and 
different-gene pairs (red). Each curve shows the histogram of similarity values. 
Same-gene image series have highly similar representations.  
 

Choosing the dictionary size 

In order to choose the size of the visual word dictionary, we performed analysis  with 
four dictionary sizes: 100, 200, 500 and 1000. Figure S3 shows mean test-set AUC 
values obtained using the different dictionary sizes. Mean AUC across categories is 
insensitive to the size of the dictionary (K). To check how stable the representations 
are between the different K's, we measured the Pearson correlation between AUC 
values of the 2081 GO categories using the different dictionary sizes. Correlation 
values are very high and are shown in table R1. The lowest correlation value is 0.846, 
between K=100 and K=1000, and is still highly significant (P<10-100). Correspondence 
between AUC values for the 2081 GO categories obtained using the two dictionary 
sizes are shown in figure S4, showing indeed a high linear correspondence.     

 

 
Figure S3: Mean test-AUC values for dictionary size K=100, 200, 500, 1000. Error 
bars indicate standard error of mean across five folds in cross-validation data. 



 

Dictionary size 
(K) 

100 200 500 1000 

100 1 0.896 0.861 0.846 

200 0.896 1 0.896 0.883 

500 0.861 0.896 1 0.917 

1000 0.846 0.883 0.917 1 

 
Table S1: Pearson's rho correlation values between AUC results for 2081 categories,  
compared across the 4 different dictionary sizes. Correlations are high (the lowest is 
0.846 between K=100 and K=1000)  

 

 
Figure S4: Mean test-set AUCs for dictionary size K=100 versus K=1000. This pair of 
dictionary sizes is the least correlated among all dictionary size pairs. It can be seen 
that even in this case, the correlation is high and indicative of a stable 
representation. 
 

 

Choice of GO category size: 
 
We chose GO categories with a number of annotations ranging from 15 to 500 
genes. We set the lower limit to 15 in order to provide enough positive examples for 
testing the classifiers across five cross-validation partitions. The higher limit is set to 
500 to preclude the resulting semantic explanations from being very general (we use 
more specific categories such as "regulation of long-term neuronal synaptic 
plasticity" or "glutamate receptor signaling pathway" and avoid general categories 
such as "transport" or "biological regulation"). 

 
To make sure that this choice of categories did not cause a bias in the classification 
results, we checked the relation between category size and test-set AUC scores. No 
significant relation between the size of the GO category and the resulting AUC values 
(Figure S5). 



 
Figure S5: Mean AUC (averaged over test-splits) for the GO categories vs. GO 
category size (number of genes in the category). There's no significant relation 
between classification success of a category and the number of genes annotated to 
it.  
 

Using several slices from each image series 

In order to take into fuller account the 3D structure of the brain, we repeated the full 
set of our experiments while including two additional sagittal sections. The three 
sections used were taken from one hemisphere, capturing the medial section and 
also the 30% and 50% marks on the medial-lateral axis. An example of three such 
slices is shown in Figure S6. 
 
 

 
 

Figure S6: Each image series was represented with three slices, the most medial (a), 

and the 30% (b) and 50% (c) marks on the medial-lateral axis. 

 
The results of the experiments using multiple slices were inconclusive. In some 
measures of performance, such as the correlation of our funcISH scores with known 
PPI interactions, adding more slices has improved the correlations. In others, such as 
correlations with cell types and pathways, the performance measures did not 
improve and even deteriorated slightly. The reasons for this inconsistency could be 
that the location of the non-medial slices is more variable, due to variation across 



brains. We note that in the main paper we report the results using a single medial 
slice. 
 

Applying a spatial pyramid kernel to the images 

A major goal of brain-image analysis is to develop a representation that captures 
both low level texture and gross-anatomy structure. While the visual bag-of-words 
representation we have used in our work removes global structures, a main 
advantage is the ability to find small-scaled spatial patterns that are location-
independent in the brain. 
 
To combine local patterns with global structures in the same representation, we 
tested a representation of the data using spatial pyramid kernels2. In this approach, 
every image is split into 4 and 16 rectangles and the bag of words method is applied 
to each rectangle separately (Figure S7). The resulting feature vector is a 
concatenation of the 1+4+16 = 21 dictionaries. This approach has been shown to be 
highly successful in machine vision tasks3,4. The down side of this approach is that it 
inflates the feature dimensionality significantly, and requires reducing the dictionary 
size. In our experiments, we tested a dictionary size 100, which provides similar 
accuracies as the dictionary size of 500 used in the rest of the analysis (as shown 
above). 
 
 

 
 

Figure S7: A spatial pyramid approach to extracting dense SIFT features. Features 
were extracted in the full image (a) and the image divided into four parts (b) and 16 
parts (c).  

 
The spatial pyramid approach yielded an overall mean AUC of 0.6231, which is 
slightly and insignificantly lower than the mean AUC obtained without the pyramidal 
kernel, 0.6322. We conclude that the increase in feature dimensionality hurts more 
than the gain obtained by describing different brain regions separately. 

 
These results illustrate the challenging tradeoff when computing both local and 
global features. An alternative approach could be based on data-dependent 
segmentation of images into anatomic structures (like the thalamus, cortex or 
cerebellum) followed by coding each structure separately. Such segmentation is a 
topic for a separate research.  
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