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Supplemental Figure 1. Positions of T-DNA Insertion in CRKS and qRT-PCR Analysis
of Transcription of crk5 Mutant Alleles.

(A) Schematic map positions of T-DNA insertions in the crk5-1 (MPI1Z38225) and crk5-2
(SALK 003774) alleles are indicated by triangles above the map. Dark grey boxes label 5’
and 3> UTRs, light grey boxes are exons, and lines represent introns. Positions of
oligonucleotide primers used in quantitative real-time PCR (qRT-PCR) analysis are indicated
by arrows. (B) qRT-PCR measurement of CRK transcript levels in wild type and the crk5-1
and crk5-2 insertion mutants. All gqRT-PCR measurements were performed in triplicates.
Bars label standard error (SE) of measurements performed with three biological replicates.
(C) Schematic map of CRK5-GFP and CRK5-GUS gene fusions used for genetic
complementation of crk5-1 mutation and cellular localization studies.
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Supplemental Figure 2. qRT-PCR Measurement of CRK5 Transcript Levels and
Detection of CRKS-GUS Expression in Different Organs.

(A) qRT-PCR measurement of CRKS transcript levels in different organs of wild-type
Arabidopsis plants. Relative transcript levels were standardized to GAPDH-2 (Atlgl13440,
Czechowski et al. 2005). The qRT-PCR measurements were performed in triplicates. Bars
label standard error (SE) of measurements performed with three biological replicates. (B-N)
Histochemical detection of CRK5-GUS expression in hypocotyls, roots, root apices, apical
meristems and cotyledons of 7 (B-D) and 14 (E-F) days old light grown seedlings. CRKS5-
GUS shows high level of expression in the root stele and lateral root primordia (G-H), as well
as in the root apex (I). In the inflorescence, CRK5-GUS is expressed in the vasculatures of
cauline leaves, sepals, petals, anther filaments and pistils of flowers (J-M). In stem cross
sections, CRK5-GUS activity is localized in the vascular bundles (N).
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Supplemental Figure 3. Cobalt Sequence Alignment of Conserved Domains of CRK
Family Members from Different Plant Species.

Members of the CRK family from different plant species carry highly conserved kinase
catalytic domains but their N-terminal domains show a remarkable sequence divergence.
Conserved myristolation, ATP-binding, T-loop, calmodulin-binding and degenerated EF
hand motives of CRKs are indicated. GenBank (NCBI) accession numbers: CRKI
(At2g41140), CRK2 (At3gl9100), CRK3 (At2g46700), CRK4 (At5g24430), CRKS
(At3g50530), CRK6 (At3g49370), CRK7 (At3g56760) CRKS (At1g49580), LeCRKI1
(AY079049), NtCBK1 (AF435450), NtCBK2 (AF435452), DcCRK1 (CAAS58750),
ZmMCKI1 (AAB47181), ZmMCK2 (AF289237), OsCBKI1 (AF368282). T-loop
autophosphorylation sites identified in CRK3 and CRK6 (Hegeman et al., 2006) are indicated
by blue shading.
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Supplemetal Figure 4. In vitro Kinase Assays with Purified Hiss-CRKS.

The phosphorylation assays were performed with 1pg of Hise-CRKS and 2pg myelin basic
protein (MBP) as artificial phosphorylation substrate at room temperature for 0.5h with or
without addition of 0.1 mM Ca*" and 1 mM EGTA alone or in combination as described in
the Methods. The reaction products were separated by 12% SDS-PAGE. CRKS5
autophosphorylation and CRK5-mediated MBP phosphorylation were detected subsequently
by autoradiography.
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Supplemental Figure 5. qRT-PCR Comparison of mRNA Levels of Genes Involved in
the Regulation of Auxin Biosynthesis and Encoding PIN Auxin Efflux and AUX/LAX
Influx Carriers in Roots of Wild Type, crk5-1 Mutant and Genetically Complemented
crk5-1/gCRKS5-GFP Seedlings. (A) Comparison of transcript levels of CYPS83BI
(At4g31500), TAAI (Atlg70560), TRP2 (At5g54810), TRP3 (At3g54640), YUCCA3
(At1g04610), NIT3 (At3g44320), and AMI (At1g08980). (B) Relative transcript levels of
PINI (At1g73590), PIN2 (At5g57090), PIN3 (At3g70940), PIN4 (At2g01420), PIN7
(At1g23080), AUXI (At2g38120), and LAX3 (Atlg77690) normalized for GAPDH?2
(Atlg13440). qRT-PCR measurements were performed in triplicates. Bars label standard
error (SE) of measurements performed with three biological replicates.
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Supplemental Figure 6. Polar Localization of CRKS5-GFP is not Changed in Root Cell
Files in Response to Gravistimulation. Vertically grown 7-day-old seedlings were
subjected to 135° rotation (Oh) and CRK5-GFP localization was monitored at 1h, 3h and 6h
after the start of gravistimulation. Bar 50 um.
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Supplemental Figure 7. Localization of PIN1-GFP, PIN4-GFP and PIN7-GFP in
Vertically Grown and Gravistimulated Roots of Wild Type and crk5-1 Mutant Plants.
(A to C) PIN1-GFP, (A) PIN4-GFP (B) and PIN7-GFP (C) expressing seedlings were grown
for 7 days in vertical position, and then subjected to gravistimulation by 135° rotation for 20
h. Localization of PIN1-GFP is comparable between wild type and crk5-1. PIN4-GFP pattern
is extended to the QC and adjacent layers of dividing cells during gravistimulation in wild
type but not in the crk5-I mutant. Compared to wild type, the levels of PIN7-GFP is
somewhat reduced in the vasculature of crk5-1 roots.
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Supplementary Figure 8. Comparison of PIN3-GFP Localization in Vertically Grown
and Gravistimulated Roots of Wild Type and crk5-1 Mutant.

(A) Localization of PIN3-GFP in columella and root cap cells of wild type (wt) and crk5-1
mutant. Color-coded heat map of Z-stack projections of 6 slices are shown before (0 min) and
after 135° gravistimulation (30 min). Seedlings were categorized to "No Polarization"
(apolar; >90%) and "Partial Polarization" (<10%) classes. Regions of partial polarization of
PIN3-GFP are indicated by black triangles. White arrows indicate the gravity vector. Scale
bar is 20pm. (B) Time course analysis of PIN3-GFP localization in wild type (wt) and crk5-1
mutant. Image at 0 min shows nonstimulated vertical grown root tips. Following
gravistimulation of 4-day-old roots by 135° rotation, images were captured at 30, 60 and 120
minutes as mid optical sections of root columella cell layer. In both (A) and (B), at least 20
wild type and crk5-1 seedlings were analyzed. Arrows indicate the gravity vector. Scale bar is
20 pm.
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Supplementary Figure 9. Cellular Localization of AUX1-YFP in Wild Type and crk5-1
Mutant Roots.

(A to F) Localization of AUX1-YFP in primary roots of 5-day-old wild type (A to C) and
crk5-1 (D to F) seedlings grown vertically in continuous light. (A, D) YFP signal, (B, E)
counter-staining with propidium iodine, and (C, F) superimposed images of (A and B) and (D
and E). (G to L) AUX1-YFP localization in the basal and internal lateral membranes of wild
type (G to I) and crk5-1 (J to K) lateral root cap cells. (G, J) YFP signal, (H, K) counter-
staining with propidium iodine, and (I, L) superimposed images of (G and H) and (J and K).
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Supplemental Table 1. List of PCR Oligonucleotide Primers.

Name Sequence (5' to 3') Gene number reference
CRK5BamHI-F ctagggatccaa ATGGGTCTATGTACTTCG

CRK5Xhol-R aggtactcgagCTAATGAGCTTTGATCG

crk5-1F CCGAATTCTCCTATTTTCTAGCTTCGGC

crk5-1R GGAGAATGAGACCTTAGAGCTCAGAC

Fishl CTGGGAATGGCGAAATCAAGGCATC Rios et al. (2002)

Fish2 CAGTCATAGCCGAATAGCCTCTCCA Rios et al. (2002)

crk5-2F CACCGAATTCTCCTATTTTCTAGC

crk5-2 R CCTCCTCTGTGTACTTCCCACC

LBal TGGTTCACGTAGTGGGCCATCG Alonso et. al. (2003)

1: CRK5-F1 AAGCGAACGTATCGTCGTTTC

2: CRK5-R2 ATTGAGTACTTTGTCAATGGCGAAT

3: CRK5-F3 GATTTCGTGTGATGTTGAGAGATT

4: CRK5-R4 GAAGTACATAGACCCATTTAAGAATCTCTC

5: CRKS5-F5 CAACGAACAATGAAGGCAAAA

6: CRK5-R6 GATCTCGCCGGAGTCTTCTT

8: CRK5-R8 TCATAACAAAAGTCAAAAGCCACA

ACT2/8-F GGTAACATTGTGCTCAGTGGTGG At3g18780, An et al. (1996)
ACT2/8-R AACGACCTTAATCTTCATGCTGC At3g18780, An et al. (1996)
CRKS5 Saul TAAACTTACCTCAGGAACTTGGT

CRKS stop to Apal

TTCAAAGTTTCAAAACCGGGCCCATGAGCTTTG
ATCGTGC

T3 primer ATTAACCCTCACTAAAGGGA Stratagene
T7 primer TAATACGACTCACTATAGGG Stratagene
CATAAGGGCCCACCATGGTGAGCAAGGGCGAG
eGFP Apal §' GAGCTG
AATATGGGCCCTTACTTGTACAGCTCGTCCATGC
eGFP Apal 3' CGAG
CATAAGGGCCCACCATGTTACGTCCTGTAGAAA
GUS Apal 5’ CCCCA
AATATGGGCCCTCATTGTTTGCCTCCCTGCTGCG
GUS Apal 3’ GTTT
CRK5-R1 GGGTCTATGTACTTCGAAACCGA for real time PCR
CRK5-R2 TAACGGAAGAGCTCGAAGGC for real time PCR
GAPDH-2-F AATGGAAAATTGACCGGAATGT Atlgl3440, Czechowski et
al. (2005) for real time PCR
Atlgl13440, Czechowski et
GAPDH-2-R CGGTGAGATCAACAACTGAGACA al. é 005) for real time PCR
PIN1-F TGGAAGACAACCTTTGGAAACT Atlg73590
PINI1-R TGAAGCATTAGAACGACGAACA Atl1g73590
PIN2-F CCTCGCCGCACTCTTTCTTT At5g57090
PIN2-R CGTACATCGCCCTAAGCAAT At5g57090
PIN3-F CAAGTGGAGATTTCGGAGGA At3270940
PIN3-R GCGTCTTTTGGTCTCTCTGC At3g70940
PIN4-F GGCAACGGAACAATCTGAAC At2201420
PIN4-R TCACCACCACCTCTAGCATTAC At2g01420
PIN7-F AAGGCGGTGCAAAAGAGATT At1g23080
PIN7-R CATCGGACCAGCTTTGTTTT At1g23080
AUXI-F CTTTCCTCCTCTGCACATTTCT At2238120

13
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AUXI-R AAGAGTGGTTTTTGTCCGTTTG At2g38120

LAX3-F TGCTTACCTTTGCTCCTGCT Atlg77690

LAX3-R GTCCCCATCCATCCTCCTAC Atlg77690

CYP83BI-F ACCCTAACCGCCCTAAACAAGA At4231500 Mei et al. 2011
CYP83B1-R GTCAGTTCCCGGCACAACAATA At4g31500 Mei et al. 2011
TAAI-F TAAACACTATACAAACGACCAAACC At1g70560 Mei et al. 2011
TAA1-R TACACCTGTCACCCATCTTCCT Atlg70560 Mei et al. 2011
TRP2-F TTGAATCCGCTTTCTATGCTCT At5g54810 Mei et al. 2011
TRP2-R CTGTAATGCTCCGTAAGCCTCT At5g54810 Mei et al. 2011
TRP3-F ATCATCTGTAAGCGGAAAGGTTC At3g54640 Mei et al. 2011
TRP3-R TTCAGTTGGCGACTTTGCATCAC At3g54640 Mei et al. 2011
YUCCA3-F CGTTCGTAGCGCTGTTCATG At1g04610 Mei et al. 2011
YUCCA3-R CTAACGGTCCAATTTTCGGC Atlg04610 Mei et al. 2011
NIT3-F AGGTTATTGGCGTTGACCCAT At3g44320 Mei et al. 2011
NIT3-R ATCTTTCCACTTCAGGGCCAG At3g44320 Mei et al. 2011
AMI-F TCTACTTCCTCGTCGCCTCCT At1g08980 Mei et al. 2011
AMI-R GCGCATTTTCTCCGTTTATACTG At1g08980 Mei et al. 2011

14
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Supplemental Methods and References
Identification of crk5 T-DNA Insertion Mutants

To screen for homozygous lines, segregation analysis of T2 families carrying T-DNA
insertions in the CRK5 gene was carried out as described (Rios et al., 2002) using T-DNA
and gene-specific primers (see Supplemental Table 1 online). By sequencing the PCR
amplified left and right T-DNA border-plant DNA junctions, a single T-DNA insertion was
localized 54 bp 3’-downstream of the ATG codon in exon 1. The T-DNA insertion generated
a target site deletion of 10 bp. At the left border junction, facing the promoter, 21 bp was
retained from the 25 bp Dborder (capital letters) sequence (plant DNA-
tcaaactccggcg/ AGGATATATTCAA TTGTAAAT-T-DNA), while the right border junction
contained 1 bp from the border repeat (T-DNA-T/cacttccggcg-plant DNA). In the crk5-2
allele, a single T-DNA insertion 167 bp 5’-upstream of the ATG generated a target site
deletion of 24 bp. At the right T-DNA junction facing the promoter, a single nucleotide from
the right border repeat was linked through a filler DNA (bold) sequence of 29 bp to CRKS5
sequences (plant DNA-aagtactcaat/ AACACATTGCGGACGTTATTGTGGTGTAAA-T-
DNA). At the left T-DNA junction 9 bp was retained from the 25 bp border repeat (T-DNA-
GTTTACACC/acaacaatttt-plant DNA).

Plasmid Constructs and Agrobacterium-mediated Plant Transformation

A Bpml-BstXI fragment of 7809bp, carrying the full length CRKS5 gene with a promoter
region of 4414 bp, was isolated from the BAC clone T20E23 obtained from the Arabidopsis
Biological Resource Center. After treatment with DNA polymerase Klenow fragment, the
CRKS5 gene was cloned into the Smal site of vector pBluescript SK (pBSK), from which the
Apal site was previously removed, to obtain pPBSKAApalgCRKS. Translational stop codon of
CRKS was replaced by an Apal site, and a Saul-Sacll 3’ segment of modified CRK5 gene
was amplified by a two-step PCR reaction using high fidelity Pfu DNA polymerase
(Fermentas) and the pBSK T3, CRKS5 Saul and CRKS5 StoptoApal primers (see Supplemental
Table 1 online). Following digestion, the PCR amplified CRK5 fragment was used for
replacement of corresponding Saul-Sacll segment of pBSKAApalgCRKS5 to generate
pBSKAApalgCRKS5Apal, carrying a single Apal site replacing the CRK5 stop codon. Coding
regions of GFP and uidA/GUS were PCR amplified as Apal fragments carrying 3’ stop

codons (see primers in Supplemental Table 1 online) and cloned into the single Apal site of
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pBSKAApalgCRKS5Apal to generate in frame 3’-translation gene fusions. The resulting
gCRKS5-GFP and gCRKS5-GUS gene cassettes were isolated as Pstl-Notl fragments and
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